Title Polimerni elektroliti na bazi poli(etilen-oksida) : doktorski rad
Title (english) Poly(ethilene oxide) based polymer electrolyte : doctoral thesis
Author Irena Krešić MBZ: 67641713771
Mentor Matko Erceg (mentor)
Committee member Nataša Stipanelov-Vrandečić (predsjednik povjerenstva)
Committee member Emi Govorčin-Bajsić (član povjerenstva)
Committee member Matko Erceg (član povjerenstva)
Granter University of Split Faculty of Chemistry and Technology (Division of Engineering and Chemistry) Split
Defense date and country 2020, Croatia
Scientific / art field, discipline and subdiscipline TECHNICAL SCIENCES Chemical Engineering
Universal decimal classification (UDC ) 62 - Engineering. Technology in general
Abstract Sažetak U ovom radu provedeno je sustavno istraţivanje strukture i toplinskih svojstava nanokompozita na bazi poli(etilen-oksida) (PEO) u svrhu dizajniranja nanokompozitnog polimernog elektrolita poboljšane ionske provodnosti. Pripravljeni su nanokompoziti PEO-a s razliĉitim nanopunilima (natrijev montmorilonit-NaMMT, komercijalno dostupni organski modificirani montmoriloniti Cloisite 10A, Cloisite 15A, Cloisite 20A, Cloisite 25A, Cloisite 93A i Cloisite 30B) metodom interkalacije iz taljevine. Uloga nanopunila je sniţavanje kristalnosti i povećanje udjela amorfne faze polimerne matrice u svrhu poboljšanja prijenosa kationa i ionske provodnosti, a da se pritom ne pogoršavaju ostala svojstva. Na osnovi rezultata provedene strukturne i toplinske karakterizacije izvršena je procjena najpovoljnijeg sustava nanokompozita polimera i nanopunila u koji je naknadno uveden Li + ion. Rezultati analize raspršenja X-zraka pri malom kutu (SAXS) pokazali su da kod svih ispitivanih uzoraka dolazi do interkalacije PEO-a u meĊuslojni prostor montmorilonita, ĉime je potvrĊen nastanak nanokompozitne strukture. Analiza spektara infracrvene spektroskopije s Fourierovom transformacijom (FTIR) svih ispitivanih nanokompozita ukazuje na postojanje interakcija izmeĊu PEO-a i punila. Narušavanje helikoidalne konformacije PEO-a, tj. smanjenje kristalne faze dodatno potvrĊuju nastanak interkalirane strukture. Primjenom diferencijalne pretraţne kalorimetrije (DSC) ispitan je utjecaj nanopunila na toplinske prijelaze (staklište, talište, kristalište) i kristalnost PEO-a. Naizraţeniji utjecaj na sniţavanje stupnja kristalnosti PEO-a u nanokompozitima pokazao je NaMMT. Organski modificirani montmoriloniti pri niţim udjelima punila djeluju kao centri nukleacije koji posljediĉno povećavaju stupanj kristalnosti PEO-a. Analiza dinamiĉke termogravimetrije (TG) pokazala je da NaMMT poboljšava toplinsku postojanost PEO-a do odreĊenog udjela. Organski modificirani montmoriloniti pri udjelima većim od 10 mas. % znaĉajno sniţavaju temperaturu poĉetka razgradnje PEO-a. Najizraţeniji negativni utjecaj uoĉen je u nanokompozitima s Cloisite 10A gdje se temperature poĉetka razgradnje sniţavaju i do 198 °C u odnosu na one ĉistog PEO-a. Rezultati karakterizacije s aspekta odgovarajućih toplinskih i strukturnih svojstava nanokompozita ukazali su na najveći potencijal NaMMT-a kao nanopunila. UvoĊenje litijevog iona u sustav provedeno je modifikacijom NaMMT-a metodom ionske izmjene s LiCl ĉime je dobiven LiMMT. Prouĉavan je utjecaj LiMMT-a i molekulne mase PEO- a na strukturna i toplinska svojstva nanokompozita PEO/LiMMT te je ispitana meĊuovisnost dobivenih rezultata i ionske provodnosti. SAXS i FTIR analiza potvrdile su nastanak nanostrukture kod svih pripravljenih nanokompozita PEO/LiMMT. Rezultati FTIR analize ukazali su na znaĉajniju interkaciju Li + iona s polimernom matricom u nanokompozitima pripravljenim s PEO- om visoke molekulne mase u odnosu na one pripravljene s PEO-om niske molekulne mase. Primjenom DSC analize utvrĊeno je da dodatak LiMMT znaĉajno utjeĉe na sniţavanje staklišta i stupnja kristalnosti PEO-a, što je stvorilo vaţan preduvjet za ostvarivanje poboljšane ionske provodnosti. Polimerni nanokompoziti pripravljeni s PEO-om viših molekulnih masa pokazali su niţe vrijednosti stupnja kristalizacije. Rezultati dinamiĉke TG analize pokazali su da LiMMT pogoršava toplinsku postojanost PEO-a, ali i dalje zadovoljava toplinsku postojanost potrebnu za ĉvrsti polimerni elektrolit. Rezultati dinamiĉke termogravimetrije ukazuju da LiMMT utjeĉe na mehanizam toplinske razgradnje PEO-a. Primjenom elektrokemijske impedancijske spektroskopije (EIS) utvrĊena je meĊuovisnost strukture nanokompozita i molekulne mase PEO-a na potencijal poboljšanja ionske provodnosti. Dodatak LiMMT-a poboljšava ionsku provodnost svih ispitanih nanokompozita PEO/LiMMT. Ionska provodnost ovisna je o masenom udjelu LiMMT-a u pripravljenim nanokompozitima i molekulnoj masi PEO-a. Najveća vrijednost ionske provodnosti pri sobnoj temperaturi zabiljeţena je u nanokompozitu pripravljenom s PEO-om viskoznog prosjeka molekulnih masa 300 000 (PEO3) pri 40 mas. % LiMMT-a. Dobivena vrijednost ionske provodnosti iznosi 2,8·10 -6 S cm -1 što je povećanje ionske provodnosti od 949 puta u odnosu na ĉisti polimer. Za seriju nanokompozita PEO/LiMMT s najvećom ionskom provodnosti provedena je kinetiĉka analiza te su razvijeni kinetiĉki modeli procesa dinamiĉke toplinske razgradnje. Na temelju rezultata kinetiĉke analize potvrĊeno je da dodatak LiMMT-a utjeĉe na dinamiĉku toplinsku razgradnju PEO-a. Za razliku od jednostupanjskog procesa dinamiĉke toplinske razgradnje PEO-a, razgradnja nanokompozita PEO3/LiMMT-a se odvija kroz tri stupnja: difuziju, reakciju n-tog reda s autokatalizom i reakciju n-tog reda.
Abstract (english) Abstract In this work a systematic study of the structure and thermal properites of poly(ethylene oxide) (PEO) based nanocomposites was performed in order to design nanocomposite polymer electrolyte with enhanced ionic conductivity. PEO based nanocomposites with different nanofiller type (sodium montmorillonite, commercially available organoclays Cloisite 10A, Cloisite 15A, Cloisite 20A, Cloisite 25A, Cloisite 93A i Cloisite 30B) were prepared by melt intercalation method. The role of nanofiller is to reduce crystallinity and increase the extent of the amorphous phase of the polymer matrix in order to improve the transfer of cations and ionic conductivity without disruption other properties. Considering the results of structural and thermal characterization, an assessment of the most favourable nanocomposite system of polymers and nanofillers was made for subsequently introduction of Li + ion. The results of the Small angle X-ray scattering (SAXS) analysis showed that PEO was intercalated into montmorillonite layers in all tested samples, which confirmed the formation of nanocomposite structure. Fourier transform infrared spectroscopy (FTIR) analysis showed the existence of an interaction of PEO and nanofiller for all examined nanocomposites. Change in the crystallinity of PEO and distorted helical structure of poly(ethylene oxide) macromolecules in nanocomposites additionally confirmed the formation of intercalated structure. Differential scanning calorimetry (DSC) revealed the influence on thermal transition (glass transition temperature, melting temperature, crystallization temperature) and crystallinity of PEO. The nanofiller NaMMT showed the most pronounced effect on lowering the degree of crystallinity of PEO in nanocomposites. Organically modified montmorillonites at low filler loadings act as nucleation agents that consequently increase the degree of crystallinity of PEO. The non-isothermal thermogravimetric (TG) analysis showed that NaMMT improves PEO thermal stability up to a certain proportion. Organically modified montmorilonites in amounts higher than 10 wt. % strongly reduce the onset degradation temperature. The most pronounced influence was observed in Cloisite 10A based nanocomposites, where the onset degradation temperatures are reduced up to 198 °C compared to the neat PEO. Thermal and structural characterization of above mentioned nanocomposites indicated the greatest potential of the NaMMT as nanofiller and therefore it was selected for the introduction of Li + ion and further analysis. The introduction of lithium ion into the system was carried out by modification of NaMMT by ion exchange method with LiCl resulting in LiMMT. The influence of LiMMT on the structure and thermal properties of PEO/LiMMT nanocomposites prepared with PEO of different molecular weight and the dependence of the results obtained on ionic conductivity have been studied. SAXS and FTIR analysis confirmed the formation of nanostructures in all prepared PEO/LiMMT nanocomposites. The results of the FTIR analysis revealed a more significant interaction of Li + ions with a polymer matrix in nanocomposite prepared with PEO of the high molecular weight compared to those prepared with PEO of the low molecular weight. DSC analysis revealed that the addition of LiMMT significantly reduces the glass transition and the degree of crystallinity of PEO, which created important precondition for improving the ionic conductivity. Polymer nanocomposites prepared with PEO of the higher molecular weights showed lower values of the degrees of crystallinity. The results of non-isothermal TG analysis revealed that the addition of LiMMT reduce the thermal stability of PEO, but still satisfies the thermal stability required for solid polymer electrolyte. The results of non-isothermal TG analysis show that LiMMT affects the mechanism of non-isothermal degradation of PEO. The effect of the nanocomposite structure and the molecular weight of PEO on the potential to improve the ionic conductivity of PEO/LiMMT nanocomposites was determined by electrochemical impedance spectroscopy (EIS). The addition of LiMMT improves the ionic conductivity of all tested PEO/LiMMT nanocomposites. The ionic conductivity depends on the weight fraction of LiMMT in the prepared nanocomposites and the molecular weight of PEO. The highest value of ionic conductivity at room temperature was noted in a nanocomposite prepared with PEO with a molecular weight of 300,000 and 40 wt. % LiMMT. The obtained ionic conductivity was 2,8·10 -6 S cm -1 . The obtained result shows an increase in ionic conductivity for 949 times compared to ionic conductivity of pure PEO. For the PEO/LiMMT series with the highest ionic conductivity, kinetic analysis was performed and kinetic models of the non-isothermal thermal degradation were developed. Based on the results of the kinetic analysis, it was confirmed that the addition of LiMMT affects the mechanism of the non-isothermal thermal degradation of PEO. Unlike the one-step process of non-isothermal decomposition of PEO, the decomposition of PEO3/LiMMT nanocomposites takes place through three stage mechanism: diffusion, n-order reaction with autocatalysis and n-order reaction.
Keywords
polimerni nanokompoziti
poli(etilen-oksid)
ionska provodnost
kinetiĉka analiza
diferencijalna pretraţna kalorimetrija
termogravimetrija
infracrvena spektroskopija
raspršenje X-zraka pri malom kutu
Keywords (english)
polymer nanocomposites
poly(ethylene oxide)
ionic conductivity
kinetic analysis
Differential scannig calorimetry
Thermogravimetry
Infrared spectroscopy
Small angle X-ray scattering
Language croatian
URN:NBN urn:nbn:hr:167:738251
Promotion 2020
Study programme Title: Chemical engineering Study programme type: university Study level: postgraduate Academic / professional title: doktor/doktorica znanosti, područje tehničkih znanosti, polje kemijsko inženjerstvo (doktor/doktorica znanosti, područje tehničkih znanosti, polje kemijsko inženjerstvo)
Type of resource Text
File origin Born digital
Access conditions Open access
Terms of use
Created on 2020-12-17 11:55:10