Simulacija kemijskih procesa primjenom programskog sustava COCO

Topolovec, Lorena

Undergraduate thesis / Završni rad

2018

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Split, Faculty of Chemistry and Technology / Sveučilište u Splitu, Kemijsko-tehnološki fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:167:018914

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-12

Repository / Repozitorij:

Repository of the Faculty of chemistry and technology - University of Split

SVEUČILIŠTE U SPLITU

KEMIJSKO - TEHNOLOŠKI FAKULTET

SIMULACIJA DESTILACIJE VIŠEKOMPONENTNE SMJESE PRIMJENOM PROGRAMSKOG SUSTAVA COCO

ZAVRŠNI RAD

LORENA TOPOLOVEC

Matični broj 1250

Split, rujan 2018.

SVEUČILIŠTE U SPLITU

KEMIJSKO - TEHNOLOŠKI FAKULTET PREDDIPLOMSKI STUDIJ KEMIJSKE TEHNOLOGIJE KEMIJSKO INŽENJERSTVO

SIMULACIJA DESTILACIJE VIŠEKOMPONENTNE SMJESE PRIMJENOM PROGRAMSKOG SUSTAVA COCO

ZAVRŠNI RAD

LORENA TOPOLOVEC

Matični broj 1250

Split, rujan 2018.

UNIVERSITY OF SPLIT

FACULTY OF CHEMISTRY AND TECHNOLOGY

UNDERGRADUATE STUDY OF CHEMICAL TECHNOLOGY CHEMICAL ENGINEERING

SIMULATION OF MULTICOMPONENT DISTILLATION USING COCO SOFTWARE

BACHELOR THESIS

LORENA TOPOLOVEC

Parent number: 1250

Split, September 2018.

TEMELJNA DOKUMENTACIJSKA KARTICA

ZAVRŠNI RAD

Sveučilište u Splitu

Kemijsko-tehnološki fakultet u Splitu

Preddiplomski studij kemijske tehnologije, smjer Kemijsko inženjerstvo

Znanstveno područje: tehničke znanosti

Znanstveno polje: kemijsko inženjerstvo

Tema rada je prihvaćena na 3. sjednici Fakultetskog vijeća Kemijsko tehnološkog fakulteta održanoj 29.11.2017.

Mentor: Prof. dr. sc. Nediljka Vukojević Medvidović

SIMULACIJA KEMIJSKIH PROCESA PRIMJENOM PROGRAMSKOG SUSTAVA COCO

Lorena Topolovec, 1250

Sažetak:

Provedena je simulacija destilacije višekomponentne smjese propana, izobutana, n-butana, izopentana i npentana primjenom programskog sustava COCO i njegove aplikacije ChemSep, uz zadane masene udjele: propan - 0,03, izobutan - 0,15, n-butan - 0,25, izopentan - 0,20 i n-pentan - 0,35. Simulacija je provedena uz zadane sljedeće uvjete: ukupan broj plitica 11, broj plitice na kojoj ulazi pojna smjesa 6, tlak 827 kPa, protok parne faze na vrhu kolone 79,378 kmol/h, protok destilata 22,181 kmol/h. Kolona je opremljena kondenzatorom s potpunim ukapljivanjem. Simulacijom se ulazna pojna smjesa razdvaja na destilat u kojem se izdvajaju n-butan kao laka ključna komponenta te izobutan i propan. Na dnu kolone se izdvaja izopentan kao teška ključna komponenta te n-pentan. Primjenom parametarske analize, simuliran je utjecaj refluksnog omjera na molne udjele ključnih komponenti u destilatu i proizvodu dna, te na toplinsku dužnost rebojlera.

Ključne riječi: simulacija, destilacija višekomponentne smjese, COCO, ChemSep, parametarska analiza

Rad sadrži: 54 stranice, 2 tablice, 54 slike

Jezik izvornika: hrvatski

Sastav Povjerenstva za obranu:

- 1. Prof. dr. sc. Marina Trgo, predsjednik
- 2. Izv. prof. dr. sc. Sandra Svilović, član
- 3. Prof. dr. sc. Nediljka Vukojević Medvidović, mentor

Datum obrane: (27.09.2018.)

Rad je u tiskanom i elektroničkom (pdf format) obliku pohranjen u Knjižnici Kemijsko-tehnološkog fakulteta Split, (Ruđera Boškovića 35).

BASIC DOCUMENTATION CARD

BACHELOR THESIS

University of Split

Faculty of Chemistry and Technology Split

Undergraduate study of chemical technology

Scientific area: technical science

Scientific field: chemical engineering

Thesis subject was approved by Faculty Council of Faculty of Chemistry and Technology, session no. 3 at 29th November 2017.

Mentor: PhD, Nediljka Vukojević Medvidović, full prof.

SIMULATION OF MULTICOMPONENT DISTILLATION USING COCO SOFTWARE

Lorena Topolovec, 1250

Abstract:

A simulation of distillation of multi-component compounds of propane, isobutane, n-butane, isopentane and n-pentane was conducted using the simulation software COCO and it is application ChemSep, with given mass fraction: propane - 0,03, isobutane - 0,15, n-butane - 0,25, isopentane - 0,20 and n-pentane - 0,35. The simulation was conducted under the following conditions: total number of plates 11, number of feed plate 6, pressure 827 kPa, flow rate of the vapor phase at the top oft he column is 79,378 kmol/h and distillate flow 22,181 kmol/h. A total condenser is used. In the simulation the entering feed stream is separated into a distillate in which n-butane stands out as a light key component, as well as isobutane and propane. At the bottom oft he column containe isopentane stands out as a heavy key component, as well as n-pentane. By applying parametric study simulating of the impact of the reflux ratio on mole fractions of the key components in the distillate and bottom as well as reboiler heat duty were performed.

Keywords: simulation, multi-component distillation, COCO, ChemSep, parametric study

Thesis contains: 54 pages, 2 tables, 54 pictures

Original in: Croatian

Defence committee:

- 1. PhD, Marina Trgo, full prof., chair person
- 2. PhD, Sandra Svilović, associate prof., member

3. PhD, Nediljka Vukojević Medvidović, full prof., supervisor

Defence date: (27th September 2018.)

Printed and electronic (pdf format) version of thesis is deposed in Library of Faculty of Chemistry and Technology Split, (Ruđera Boškovića 35).

Završni rad pod nazivom: "Simulacija destilacije višekomponentne smjese primjenom programskog sustava COCO" izrađen je u Zavodu za inženjerstvo okoliša pod vodstvom prof. dr. sc. Nediljka Vukojević Medvidović, u razdoblju od travnja do rujna 2018. godine.

Zahvala:

Veliku zahvalnost, ovim putem, želim uputiti mojoj mentorici prof. dr. sc. Nediljki Vukojević Medvidović. Veliko hvala za izdvojeno vrijeme i literaturu bez koje ovaj rad ne bi bio kompletan. Uvijek je bila spremna pomoći.

Najveću zahvalnost upućujem svojoj obitelji koja me podržavala i neizmjerno cjenila svaku moju odluku i želju. Uvijek su bili tu za mene, kada je bilo teško i kada se trebalo radovati. Bili su uz mene kada se i nisu slagali s odlukama, ali uvijek su vjerovali.

ZADATAK ZAVRŠNOG RADA

a) Provesti simulaciju destilacije višekomponentne smjese propana, izobutana, nbutana, izopentana i n-pentan primjenom programskog sustava COCO i njegove aplikacije ChemSep. Maseni udjeli pojedinih komponenti u pojnoj smjesi su sljedeći:

komponenta	mas. udjel, -
propan (C3)	0,05
izobutan (i-C4)	0,15
n-butan (n-C4)	0,25
izopentan (i-C5)	0,20
n-pentan (n-C5)	0,35

Simulaciju provesti uz zadane uvjete: ukupan broj plitica 11, broj plitice na kojoj ulazi pojna smjesa 6, tlak 827 kPa, protok parne faze na vrhu kolone 79,378 kmol/h, protok destilata 22,181 kmol/h. Kolona je opremljena kondenzatorom s potpunim ukapljivanjem.

b) Analizirati rezultate simulacije.

c) Primjenom parametarske analize, simulirati utjecaj refluksnog omjera na molne udjele ključnih komponenti u destilatu i proizvodu dna i na toplinsku dužnost rebojlera, te izvesti zaključke.

SAŽETAK:

Provedena je simulacija destilacije višekomponentne smjese propana, izobutana, nbutana, izopentana i n-pentana primjenom programskog sustava COCO i njegove aplikacije ChemSep, uz zadane masene udjele: propan - 0,03, izobutan - 0,15, n-butan -0,25, izopentan - 0,20 i n-pentan - 0,35. Simulacija je provedena uz zadane sljedeće uvjete: ukupan broj plitica 11, broj plitice na kojoj ulazi pojna smjesa 6, tlak 827 kPa, protok parne faze na vrhu kolone 79,378 kmol/h, protok destilata 22,181 kmol/h. Kolona je opremljena kondenzatorom s potpunim ukapljivanjem. Simulacijom se ulazna pojna smjesa razdvaja na destilat u kojem se izdvajaju n-butan kao laka ključna komponenta te izobutan i propan. Na dnu kolone se izdvaja izopentan kao teška ključna komponenta te n-pentan. Primjenom parametarske analize, simuliran je utjecaj refluksnog omjera na molne udjele ključnih komponenti u destilatu i proizvodu dna, te na toplinsku dužnost rebojlera.

Ključne riječi: simulacija, destilacija višekomponentne smjese, COCO, ChemSep, parametarska analiza

SUMMARY:

A simulation of distillation of multi-component compounds of propane, isobutane, nbutane, isopentane and n-pentane was conducted using the simulation software COCO and it is application ChemSep, with given mass fraction: propane - 0,03, isobutane -0,15, n-butane - 0,25, isopentane - 0,20 and n-pentane - 0,35. The simulation was conducted under the following conditions: total number of plates 11, number of feed plate 6, pressure 827 kPa, flow rate of the vapor phase at the top of the column is 79,378 kmol/h and distillate flow 22,181 kmol/h. A total condenser is used. In the simulation the entering feed stream is separated into a distillate in which n-butane stands out as a light key component, as well as isobutane and propane. At the bottom of the column containe isopentane stands out as a heavy key component, as well as n-pentane. By applying parametric study simulating of the impact of the reflux ratio on mole fractions of the key components in the distillate and bottom as well as reboiler heat duty were performed.

Keywords: simulation, multi-component distillation, COCO, ChemSep, parametric study

SADRŽAJ

		Str.
UV	YOD	1
1.	OPĆI DIO	2
	1.1. ULOGA I ZNAČAJ SIMULACIJE PROCESA U KEMIJSKOM	3
	INŽENJERSTVU	
	1.2. SIMULACIJA KEMIJSKIH PROCESA PRIMJENOM	5
	RAČUNALNOG PROGRAMSKOG SUSTAVA COCO	
	1.3. UVOD U COFE GRAFIČKO-KORISNIČKO SUČELJE	6
	1.3.1. Konfiguracija TEA baze podataka	10
	1.3.2. Konfiguracija CORN baze podataka	11
	1.4. UVOD U DESTILACIJU VIŠEKOMPONENTNIH SMJESA	14
2.	EKSPERIMENTALNI DIO	17
	2.1. MOTIVACIJSKI PRIMJER	18
	2.2. KORACI U RJEŠAVANJU SIMULACIJE U COCO	21
	RAČUNALNOM PROGRAMU	
	2.2.1. Odabir komponenti	21
	2.2.2. Definiranje pojne smjese	22
	2.2.3. Ulaz u Chem-Sep	24
	2.2.4. Definiranje radnih uvjeta kolone u ChemSep-u	25
	2.2.5. Proračun termodinamičkih svojstava	26
	2.2.6. Definiranje ulazne pojne smjese u ChemSep-u	26
	2.2.7. Definiranje radnih uvjeta destilacijske kolone u ChemSep-u	27
	2.2.8. Specifikacija uvjeta razdvajanja destilacije kolone u ChemSepu-u	29
	2.2.9. Rješavanje simulacije u ChemSep-u	29
3.	REZULTATI	31
4.	RASPRAVA	36
	4.1. ANALIZA REZULTATA SIMULACIJE VIŠEKOMPONENTNE	37
	SMJESE	
	4.2. PARAMETARSKA ANALIZA	47
5.	ZAKLJUČCI	50
6.	LITERATURA	52

UVOD

Kemijsko inženjerstvo je područje tehničkih znanosti koje se bavi proučavanjem i razvijanjem procesa pretvorbe tvari i energije u korisne proizvode. Kako bi se kemijskim inženjerima olakšao i skratio period sinteze i analize kemijskih procesa pristupa se provedbi simulacije procesa programskim sustavima.

Simulacija procesa simbolički je prikaz kemijskog, biološkog ili fizičkog procesa, odnosno opisivanje nekog procesa iz stvarnog života (fizičke, kemijske ili biološke prirode) s matematičkim modelima na računalu pomoću programskih procesnih simulacija.

Trenutno je dostupno nekoliko stotina komercijalnih i besplatnih računalnih programa za simulaciju, uže ili šire specijalnosti po različitim granama kemijske industrije, a svi su definirani kao CAPE (*engl. Computer Aided Process Engineering*) softveri. Najpoznatiji besplatni računalni programi za simulaciju su Kemisimp i COCO računalni program. COCO odnosno njegova aplikacija ChemSep računalni program omogućava i rješavanje problema vezanih za destilaciju višekomponentnih smjesa, a što je mnogo složeniji problem od destilacije binarnih smjesa. Budući da se višekomponentne smjese ne mogu razdvojiti destilacijom u samo jednoj koloni kod višekomponentnih smjesa razdvajanje se svodi na razdvajanje dvije komponente, lake ključne LK (*engl. Light Key*) i teške ključne HK (*engl. Heavy Key*) komponente. Izbor lake i teške ključne komponente ovisi o njihovim hlapljivostima i količinskim udjelima.¹⁻⁸

U ovom radu provest će se simulacija destilacije višekomponentne smjese propana, izobutana, n-butana, izopentana i n-pentana primjenom programskog sustava COCO i njegove aplikacije ChemSep.

1. OPĆI DIO

1.1. ULOGA I ZNAČAJ SIMULACIJE PROCESA U KEMIJSKOM INŽENJERSTVU

Kemijsko inženjerstvo je područje tehničkih znanosti koje se bavi proučavanjem i razvijanjem procesa pretvorbe tvari i energije u korisne proizvode. To je grana inženjerstva koja uz primjenu znanosti (fizike, biologije, kemije i matematike) te ekonomske analize dizajnira kemijske, fizikalne ili biološke procese kojima je cilj pretvorba ulaznih sirovina u konačne produkte (proizvode) uz što manje troškove. Prema Arthuru D. Litllea-u, proces se sastoji od niza jediničnih operacija (npr. destilacija, filtracija, usitnjavanja, kristalizacija, itd.) povezanih u cjelinu. Potreba za optimizacijom procesa potiče sustavski pristup dizajnu kemijsko-inženjerskih procesa, a primjena računala otvara mogućnosti za predviđanje svojstava složenih tvari te modeliranje procesa na svim razinama. Na slici 1.1. dat je slikovit prikaz simulacije procesa u kemijskom inženjerstvu kojima je cilj simulirati načine na koje se može od ulaznih sirovina dobiti željeni proizvod.^{1,3}

Slika 1.1. Slikoviti prikaz simulacije procesa u kemijskom inženjerstvu.

Simulacija procesa simbolički je prikaz kemijskog, biološkog ili fizičkog procesa, odnosno opisivanje nekog procesa iz stvarnog života (fizičke, kemijske ili biološke prirode) s matematičkim modelima na računalu pomoću programskih procesnih simulacija. Dakle, može se reći da je simulacija procesa reprodukcija kemijskih, fizikalnih, bioloških i drugih tehničkih procesa i jediničnih operacija na

temelju modela. Stoga simulacija u općenitom smislu podrazumijeva modeliranje sustava ili okoliša (okruženja) kako bi se predvidjelo njegovo ponašanje. Provodi se primjenom simulacijskih programskih paketa (*engl. software*) koji olakšavaju projektiranje novih procesa i proizvoda ili poboljšanje postojećih, usporedbu različitih tehničkih rješenja, identifikaciju uzroka problema u radu, optimizaciju postojećih postrojenja, procjenu utjecaja na okoliš, i dr. Računalni programi za simulaciju temelje se na proračunima materijalne i energijske bilance, simuliranju jediničnih tehnoloških operacija ili kinetici procesa sa kemijskom reakcijom u odgovarajućim uređajima temeljem različitih baza podataka i to:

- baze podataka sa fizičko-kemijskim karakteristikama kemijskih elemenata, spojeva, industrijskih smjesa
- baze jediničnih modela i operacija za pojedinačnu tehnološku opremu
- baze podataka sa termodinamičkim modelima i/ili modelima strujanja fluida
- baze numeričkih metoda.⁸⁻¹²

Trenutno je dostupno nekoliko stotina komercijalnih i besplatnih računalnih programa za simulaciju, uže ili šire specijalnosti po različitim granama kemijske industrije, a svi su definirani kao CAPE (*engl. Computer Aided Process Engineering*) softveri. Izbor odgovarajućeg softvera ovisi o karakteristikama tehnološkog procesa i opreme. Najčešće korišteni računalni programi za simulaciju mogu se svrstati u dvije kategorije i to prema njihovoj dostupnosti. Komercijalni računalni programi za simulaciju su: PRO II, ProSim, Alph, AspenPlus, SuperPro Desinger, Hysys, Toxchem, EcoSim i EES. Najpoznatiji besplatni računalni programi za simulaciju su Kemisimp i COCO Simulator.

Razlog za veliku popularnost besplatnog oblika simulacijskog programskog paketa za procese kemijskog inženjerstva je što su *"komercijalni programski paketi preskupi za akademsku zajednicu i samostalno učenje*". Između velikog broja dostupnih programskih simulacijskih paketa, COCO je prepoznat među raznim programskim paketima otvorenim za javnu upotrebu upravo zbog svoje fleksibilne strukture i programskog sučelja koje je jednostavno za korištenje.¹²⁻¹⁵

Shoaib et al. usporedili su sposobnosti besplatnog programskog simulacijskog procesa kemijskog inženjeringa COCO te komercijalnog Aspen Plus u smislu njihovih sposobnosti računanja, pripadajućeg paketa termodinamičkih svojstava te modula rada uređaja jediničnih operacija i prikaza dijagrama tokova. Dobiveni rezultati istaknuli su neka ograničenja u bazi podataka fizičkih svojstava i rješavanja primjenom COCO, kao i nemogućnosti provođenja analize osjetljivosti i simulacija specifičnosti dizajna, ali je također usredotočena na vrlo pozitivan aspekt COCO. Naime, COCO omogućuje unošenje nove baze podataka fizičkih svojstava komponenti izvana, dobiveni rezultati podudaraju se onima dobivenim putem bilo kojeg dobro razvijenog komercijalnog programskog paketa, a COCO programsko sučelje je vrlo sofisticirano kao što je slučaj s bilo kojim komercijalnim programskim paketom poput Aspen Plus.^{12,15}

1.2. SIMULACIJA KEMIJSKIH PROCESA PRIMJENOM RAČUNALNOG PROGRAMSKOG SUSTAVA COCO

Računalni programski sustav COCO (*engl. CAPE-OPEN to CAPE-OPEN*) je besplatni, nekomercijalan, grafički, modularan te kompatibilan s CAPE-OPEN standardom (*engl. Computer-Assisted Process Engineering*). Standard CAPE-OPEN definira pravila i sučelja koja omogućuju aplikacijama ili komponentama CAPE da interoperiraju. Interoperabilnost programskog paketa znači da korisnik može uređivati parametre rada jedinice koje definira pomoću CAPE-OPEN standarda ili otvoriti vlastito korisničko sučelje operacijske jedinice. COCO je izvorno bio namijenjen za testiranje CAPE-OPEN alata, a trenutno pruža besplatni programski sustav za simulaciju kemijskih procesa za studente u skladu sa standardom CAPE-OPEN-om.^{4,5} Njegova prednost je što omogućuje dodavanje novih jediničnih operacija ili termodinamičkih paketa. COCO se pokreće na računalima sa sustavom Windows OS. Može se besplatno preuzeti s web stranice: <http://www.cocosimulator.org>. Pri instalaciji COCO instalira se nekoliko komponenti:

- COFE (*engl. CAPE-OPEN Flowsheet Environment*) je intuitivno grafičkokorisničko sučelje za prikaz dijagrama toka procesa (*engl. Process Flow Diagram, PFD*). COFE prikazuje svojstva tokova, obrađuje pretvorbu jedinica te omogućuje grafički prikaz postrojenja koji se simulira. COFE dijagram toka može se koristiti kao CAPE-OPEN jedinična operacija zasebno ili unutar COFE (dijagram unutar dijagrama) ili unutar drugih programskih sustava - TEA (*engl. Thermodynamics for Engineering Applications*) je termodinamička baza podataka koja uključuje banku podataka za 430 najčešće korištenih kemikalija te više od 100 analitičkih ili numeričkih metoda proračuna

- COUSCOUS (*engl. CAPE-OPEN Unit-operations*) je paket jediničnih operacija u okviru COCO, poput separatora, miješalica, izmjenjivača topline, pumpi, itd. Aplikacija ChemSep-a služi za simulaciju ravnotežne destilacije u okviru COCO

- CORN (engl. CAPE-OPEN Reaction Numerics) je paket koji omogućava simulaciju kinetike ili ravnoteže reakcije u reaktorskim jedinicama.^{1,12}

1.3. UVOD U COFE GRAFIČKO-KORISNIČKO SUČELJE

Računalni program COFE pokreće se klikom na ikonu START, te odabirom ikone COFE . Nakon ulaska u računalni program COFE, pojavljuje se prozor sa alatnim trakama i radnim prostorom.

D 😂 🖬 🍇 🗈 🔞		7 d	efaul	t			-	-		-		-	 		_		-	-	-	-	
ocument Explorer	- # ×	1.1.1					101	٦.	-1 E	-1	1	0	2	<u>_</u>		50	8	9	6	2	
. El						 							 								
Clauster et a						 							 								
Classicher and		1.1.1.1		1.1.1		 	101.1						 								
Flowspeet1				* * *		 							 								
TIONSILEEL		1111		111		 		1.1.1					 								• •
- Flowsheet				2.2.3				1.00													
T						 					111		 								
Settings																					
		1 · · · · ·			0.00	 	- 13 - K						 								
				* * *		 							 								
		1.1.1.1				 		1.1.1					 								
		1.1.1.1				 							 	• • •							
				* * *		 							 					* * *			
				* * *										• • •							
					1.01	 		1.5													
						 	7.07 °.				202 20		 								

Slika 1.2. Alatna traka i radni prostor u računalnom programu COFE.

Sučelje programa COFE može se podijeliti na nekoliko elemenata. Svaki element ima svoju svrhu te se njegovim korištenjem olakšava rad u programu. U menijima se nalaze alati za upravljanje kojima se simulira, uređuje projekt, kreira objekt, izbornik s alatima, izbornik za otvaranje dodatnih prozora te izbornik za pomoć u radu s programom.^{3,5}

Prva u redu s lijeva za odabir u alatnoj traci je opcija (naredba) "*File*" koja omogućuje otvaranje, zatvaranje, spremanje i printanje novih ili postojećih datoteka (slika 1.3.).

0	OFE	- [Flowsheet1]											
: 🚺	File	Edit Insert	Flowsheet	Plot	View	Add-ins	Window	Help					
: 🗅	D	New				Ctrl+N	- 1	.: <u>}</u> .	r: 🗗	€∎	<u> 9</u>	. 🛤 🖑	<u>s</u> 5 5 2 2
Doci	Ē	Open				Ctrl+O							
	х	Close											· · · · · · · · · · · · · · · · ·
P		Save				Ctrl+S							
		Save As											
	B	Clear Log				Ctrl+L							
	6	Print				Ctrl+P							· · · · · · · · · · · · · · · · · · ·
	9	Page Setup											· · · · · · · · · · · · · · · · · ·
	₫.	Print Preview											
	9	Print Setup											
	P	Properties				F12							
	Ф.	1 Flowsheet1_S	imulacija_kon	presor	ra_Loren	a							
	x	Exit											· · · · · · · · · · · · · · · · · ·
				1									

Slika 1.3. Alatna traka "File".

Druga u redu s lijeva za odabir u alatnoj traci je opcija (naredba) "*Edit*", a služi za uređivanje. U "*Edit*" izborniku jedna od naredbi je i "*Preferences*" preko koje se mogu odabrati različite postavke kao što je odabir sustava mjernih jedinica (SI ili US) (slika 1.4.)

Slika 1.4. a) Alatna traka "Edit"; b) Alatna traka "COFE Preferences".

Treća u redu s lijeva za odabir u alatnoj traci je opcija "*Insert*" koja omogućava ucrtavanje materijalnih i energijskih tokova/struja (*engl. stream*) nekog procesa koji se modelira. Materijalni tokovi/struje crtaju se punom linijom (*engl. solid lines*), a energijski tokovi/struje isprekidanom linijom (*engl. dotted lines*) kao što se može vidjeti na slici 1.5.

🔇 COFE - [Flowsł	heet	1]		
🖸 🚺 File Edit	Inse	ert Flowsheet Plot View Ad	dd-ins Wind	dow Help
- D 🚅 🔲 🍇	4	Stream	Ctrl+l	F # # F A = 9.9 5 5 A A A A
Document Explore	JP	Energy stream	Ctrl+Shift+I	
	5	Information stream Ctrl+	Shift+Alt+I	· · · · · · · · · · · · · · · · · · ·
Flowsheet1	0	Unit operation	Ctrl+U	
	õ	Controller	Ctrl+Shift+C	
	ē	Flow constraint (Ctrl+Shift+F	3
	₽	Stream report		·····
	<u>≣</u> ⊜.	Unit parameter report		4
	Eb.	Unit report		· · · · · · · · · · · · · · · · · · ·
	ď	Author report		
	Û	Object		
	>	Line		
	ab	Text		
	ab	Label		
	<u>ab</u>	Hyperlink		
		Rectangle		
	\bigcirc	Oval		
	2	Bitmap from file		
		Course to avid		
L		Shap to gho		

Slika 1.5. Alatna traka "Insert".

Dvostrukim klikom na određenu struju otvara se mogućnost unošenja specifičnih parametara tj. definira se ulazna struja.

COFE - [Flowsheet1:2	[3]]					
File Edit Flows	heet Streams	Plot	View	Window	Help	
) 🗅 🚅 🔚 🍇 🛍 (i 🤳 🕨 🦉	defa	ult		 I→ S^E₁ I¹ I→ 	
Document Explorer	→ † ×	name		3	unit	
Eloushaat1		Str	eam			
		Co	nnecti	ons		
		🔻 Ov	/erall			
A Cattings		pressure	э	N/A	Pa	
setungs		tempera	iture	N/A	ĸ	
		flow		N/A	mol / s	
		MW		0	kg / mol	
		Co	mpour	nd flows		

Slika 1.6. Specifikacija strujnih tokova.

Četvrta u redu s lijeva za odabir u alatnoj traci je opcija "*Flowsheet configuration*" o čemu će se više reći u poglavlju 1.3.1. (konfiguracija TEA baze podataka). Peta u redu s lijeva za odabir u alatnoj traci je opcija "*Plot*" koja omogućava grafičke prikaze. Posljednja ali ne i manje bitna, gledajući s lijeva je opcija "*Help*" koja osigurava potrebne informacije koje nas zanimaju.⁵

Pri simulaciji u COCO programskom sučelju boje protoka i jediničnih operacija ovise o statusu ulaznih i izlaznih tokova. Svaka boja ima svoje značenje i daje nam informaciju o ispravnosti unesenih vrijednosti. Koriste se sljedeće boje:

- siva: specifikacija struje ili jedinične operacije nije potpuna

- crna: specifikacija struje ili jedinične operacije je potpuna

- zelena: simulacija je uspješno završena

- crvena: došlo je do pogreške pri rješavanju simulacije.

Brz način dobivanja više informacija o statusu struje ili jedinice rada je da se zadrži miš iznad nje dok se poruka ne pojavi.

Nakon upoznavanja s grafičko-korisničkim sučeljem COFE, a prije pristupanja simulaciji nekog jediničnog procesa ili operacije, bitno je definirati podatke ulazne sirovine (odnosno konfigurirati TEA bazu podataka) i stehiometriju reakcije, tj. konfigurirati CORN bazu podataka.^{5,12,15}

1.3.1. Konfiguracija TEA baze podataka

Primjer konfiguracije TEA baze podataka za reakciju gorenja metanola:

$$2 \text{ CH}_3\text{OH} + 3 \text{ O}_2 \rightarrow 2 \text{ CO}_2 + 4 \text{ H}_2\text{O}$$
 (1-1)

Odabire se slijed opcija "Settings \rightarrow Property packages \rightarrow Add \rightarrow TEA(CAPE-OPEN 1.1". (slika 1.7.). Otvara se prozorčić "Property package definition" u kojem treba unijeti podatke za ime (engl. "name"), opis (engl. Description) te odabir modela (engl. "Model unit"), kao što je prikazano na slici 1.8. Odabire se "model set": "Peng-Robinson".

Slika 1.7. Slijed opcija pri konfiguraciji TEA baze podataka "Settings \rightarrow Property packages $\rightarrow Add \rightarrow TEA(CAPE-OPEN 1.1")$.

Komponente se u reakcijski sustav dodaju klikom na opciju "Add" (slika 1.8.). Nakon odabira komponenti potrebno ih je označiti ulaskom u "*Stream type definition*" (slika 1.9.). Time je završeno konfiguriranje TEA baze podataka.

Flowsheet of	configuration:	
🞯 Property p	backage definition:	×
Package Mo	ode Configure Help	
Name:	2 methanol oxygen	
Description:	2 methanol and 3 oxygen reacts to produce 2 carbon diokside and 4 water	
Model set:	Peng Robinson	-
Compounds:		
Methanol		Add
Carbon dioxic	le	Delete
Water		
	ОК	Cancel

Slika 1.8. Dodatak komponenti.

🞯 Flowsheet configuration	:				\times
Property packages	Reaction packages	Compound	ds Prope	rties	Phase Info
Stream types Flowsh	eet Options 📔 App	earance	Stream order	Unit 0	Operation order
Stream type definition:					
default			▼ New	Delete	Rename
Material settings:					
Description:	default stream type				Change
Default color scheme:	Default			•	Apply
Property package:	2 methanol oxygen				-
Compounds:	 ✓ Methanol ✓ Oxygen ✓ Water ✓ Carbon dioxide 				

Slika 1.9. Označavanje komponenti (engl. methanol, oxygen, carbon dioxide and water).

1.3.2. Konfiguracija CORN baze podataka

Pri simulaciji procesa u kojem se zbiva reakcija potrebno je otvoriti CORN bazu podataka. Odabire se slijed opcija "*Settings* \rightarrow *Reaction packages* \rightarrow *Add* \rightarrow *CORN Reaction Package Manager* \rightarrow *Select*".

Stream types Property packages	Flowsheet Options Appearance Stream order Unit O Reaction packages Compounds Properties	peration order Phase Info
Reaction packages	Select Reaction Man	Add Remove Edit Rename Info

Slika 1.10. Slijed opcija pri konfiguraciji CORN baze podataka "Settings \rightarrow Reaction packages \rightarrow Add \rightarrow CORN Reaction Package Manager \rightarrow Select".

Ulaskom u ovu opciju "*CORN Reaction Package Manager*" otvora se prozorčić u kojem je potrebno odabrati opciju "*New* \rightarrow *New Reaction Package* \rightarrow *Edit*".

Stream types	Flowsheet 0	ptions Ap	pearance	Stream o	order	Unit Operation orde
Property packages	s Rea	ction packages	Compo	unds	Properties	Phase Info
Reaction packages	s:		· ·			
🌉 New Reaction	Package					Add
						Remove
						Edit
						Rename
						Info

Slika 1.11. Definiranje "New Reaction Package".

Dalje se odabire opciju "*General*" te se unesu podatci kao što je prikazano na slici 1.12., zatim opcija "Compounds \rightarrow Add \rightarrow From material template \rightarrow OK". Otvorit će se prozorčić sa komponentama koje su prethodno navedene (slika 1.13).

· · · · · · · · · · · · · · · · · · ·	on:		
Edit:		×	de
eneral Compounds F	Reactions		h
General:	•	[
Name:	2 methanol oxygen		
Description:	2 moles of methanol and 3 moles oxygen reacts to pro	duce 2 moles ca	
Standard:			
CAPE-OPEN thermo ve	rsion: Version 1.0	-	

Slika 1.12. New Reaction Package – Edit.

Edit:		· 1			×	de hfe
Name		lions	Formula	MW	Add	
ld compounds:					\times	
Name	Formula	Mol Weight	CAS			
 Methanol 	CH4O	32.042	67-56-1			
Oxygen	02	31.999	7782-44-7			
✓ Water	H20	18.015	7732-18-5			
☑ Carbon dioxide	CO2	44.0095	124-38-9			
				ОК	Cancel	
<				>		ſ

Slika 1.13. Slijed opcija označavanja komponenti "Compounds \rightarrow Add \rightarrow From material template \rightarrow OK".

Sljedeći i posljednji korak je odabir slijeda opcija "*Edit* \rightarrow *Reactions* \rightarrow *Create* \rightarrow *Enter reaction ID*" te se unose podaci kako je prikazano na slici 1.14. Pri tom treba paziti da se za reaktante ispred stehiometrijskog omjera piše minus, a za produkte plus. Budući da se radi o heterogenoj reakciji: 2 CH₃OH + 3 O₂ \rightarrow 2 CO₂ + 4 H₂O, odabire se opcija "*Heterogenus*". Odabirom opcije "*Phase*" za navedenu reakciju odabere se "*Liquid*". Time je završena konfiguracija CORN baze podataka za navedenu reakciju.^{5,12}

Edit:	×	d d
ieneral Compounds Reacti	ons	
Reaction: Mil7	Reaction properties: Mil7	
	-2 Methanol -3 Oxygen 2 Water 4 Carbon dioxide	
	Equilibrium Reaction K Heterogeneous Rate: Equilibrium constant: Equilibrium basis: Molarity	
Create Rename Delete	Phase:	Ш

Slika 1.14. Definiranje stehiometrije reakcije.

1.4. UVOD U DESTILACIJU VIŠEKOMPONENTNIH SMJESA

Destilacija je toplinski separacijski proces razdvajanja dvije ili više komponenti u smjesi na čiste komponente na temelju njihovih različitih hlapljivosti, odnosno temperatura vrelišta. Destilacija višekomponentnih smjesa mnogo je složeniji problem od destilacije binarnih smjesa, budući se višekomponentne smjese ne mogu razdvojiti destilacijom u samo jednoj koloni. Stoga se kod višekomponentnih smjesa razdvajanje svodi na traženo razdvajanje dvije komponente, lake ključne LK *(engl. Light Key)* i teške ključne HK *(engl. Heavy Key)* komponente. Izbor lake i teške ključne komponente ovisi o njihovim hlapljivostima i količinskim udjelima. Raspodjela ostalih komponenti se izračunava uz pretpostavke da će sve komponente manje hlapljive od teške ključne komponente u proizvod dna kolone. Komponente koje imaju hlapljivost između teške i lako ključne komponente će se raspodjeljivati između proizvoda vrha i dna kolone¹⁻⁷. Kod rektifikacije kao najvažnije metode korištene u destilacijskoj praksi, dio kondenzata se vraća u kolonu, pri čemu dolazi do kontakta. Opća shema rektifikacijske kolone data je na slici 1.15.²

Slika 1.15. Opća shema rektifikacijske kolone²

Ulazna pojna smjesa koju je potrebno razdvojiti na čiste komponente uvodi se u kolonu na mjestu ovisnom o stanju pojne smjese (od pothlađene kapljevine do pregrijane pare). Pri tom kapljevina (refluks) struji prema dolje, dok para struji prema gore, čime se osigurava kontakt između uzlazne pare i silazne kapljevine, tj. do izmjene topline i prijenosa tvari difuzijom. Tako se ka vrhu kolone pare obogaćuju lakšim, a idući ka dnu kolone teže hlapljivim komponentama. Stoga se gornji dio destilacijske kolone od ulaza pojne smjese naziva sekcija rektifikacije, a dio kolone ispod ulaza pojne smjese se naziva sekcija stripiranja. Laka ključna komponenta i sve komponente hlapljivije od LK se izdvajaju u obliku destilata na vrhu kolone, a teška ključna komponenta i sve komponente manje hlapljive od HK se izdvajaju na dnu, kao proizvod dna kolone. Mnogobrojnim kontaktima pare i kapljevine u koloni se postiže oštrina odvajanja. Proizvod vrha kolone dalje ide u kondenzator gdje se vrši ukapljivanje. Prema uvjetima kolone, kondenzator može raditi s potpunim ili djelomičnim ukapljivanjem. Na dnu kolone nalazi se isparivač - rebojler koji ima svrhu proizvodnje pare. Može se zagrijavati vanjskom strujom ili strujom neke grijaće kolone.²

Materijalna bilanca kolone može se prikazati:

$$\mathbf{F} = \mathbf{D} + \mathbf{B} \tag{1-1}$$

gdje je:

F - protok pojne smjese, kmol/h

D - protok destilata, kmol/h

B - protok proizvoda dna, kmol/h.

Omjer pretoka određuje protoke faza kroz kolonu koji se ovisno o faznom stanju pojenja mogu razlikovati u gornjem (rektificirajućem) i donjem (stripirajućem) dijelu kolone. Pod omjerom pretoka u pravilu se podrazumijeva tzv. vanjski omjer pretoka, odnosno omjer molnih protoka kapljevine i destilata:

$$R = \frac{L}{D}$$
(1-2)

gdje je:

R - omjer pretoka

 $\overset{\cdot}{L}$ - protok kapljevine kroz kolonu, kmol/h.

Kao i kod binarnih smjesa, osnova proračuna su ravnotežni omjeri komponenti u parnoj i kapljevitoj fazi izraženi preko koeficijenta raspodijele (K-vrijednost) promatrane komponente "i" između parne i kapljevite faze, K_i.

$$K_i = \frac{y_i}{x_i} \tag{1-3}$$

gdje je:

 $x_{i}-molni$ udio komponente "i" u kapljevitoj fazi, -

 y_i – molni udio komponente "i" u parnoj fazi, -.

Vrijednost koeficijenta raspodijele ovise o tlaku, temperaturi i sastavu faza tj. $K_i = f$ (p, T, x_i , y_i). ^{2,8,11,13,14}

2. EKSPERIMENTALNI DIO

2.1. MOTIVACIJSKI PRIMJER

U ovom radu provest će se simulacija destilacije višekomponentne smjese u rektifikacijskoj koloni primjenom COCO računalnog programa, odnosno njegove aplikacije ChemSep. Sastav višekomponentne smjese naveden je u Tablici 2.1..^{3,15}

komponente	mas. udjel	molekulska
Komponenta	-	masa, g/mol
propan (C3)	0,05	44,1
izobutan (i-C4)	0,15	58,1
n-butan (n-C4)	0,25	58,1
izopentan (i-C5)	0,20	72,1
n-pentan (n-C5)	0,35	72,1
Σ	1,00	

Tablica 2.1. Sastav višekomponentne pojne smjese^{3,15}.

Pojna smjesa je zasićena kapljevina (q=1), ulaznog molarnog protoka 45,36 kmol/h, pri tlaku od 827 kPa i temperaturi od 82,53 °C. Specifikacije motivacijskog primjera destilacije višekomponentne smjese slikovito su prikazane na slici 2.1.

Potpuno ukapljivanje

Slika 2.1. Specifikacije motivacijskog primjera destilacije višekomponentne smjese^{3,15}.

Uvjeti pri kojima će se provesti simulacija su prikazani u tablici 2.2., a na slici 2.2. specificirani su uvjeti simulacije u ChemSep-u.

Tablica 2.2. Uvjeti simulacije destilacije višekomponentne smjese.

varijabla	opis
broj plitica (tavana)	11
broj plitice na kojoj ulazi pojna smjesa	6
tlak (na svakoj plitici uključujući kondenzator i	p=827 kPa
isparivač)	
toplinska dužnost na svakoj plitici (ne uključujući	Q _{ij} =0
kondenzator i isparivač)	
protok parne faze na vrhu kolone, V	V =79,378 kmol/h
protok destilata, D	D=22,181 kmol/h

Slika 2.2. Specifikacija uvjeta simulacije.

Također se pretpostavlja da je tlak refluksa isti kao i tlak u kondenzatoru, gubitak topline refluksa je zanemariv, a temperatura refluksa odgovara vrelištu kondenzirane pare.

2.2. KORACI U RJEŠAVANJU SIMULACIJE U COCO RAČUNALNOM PROGRAMU

2.2.1. Odabir komponenti

Odabirom slijeda opcija "Settings \rightarrow Flowsheet configuration \rightarrow Properties package \rightarrow Add \rightarrow New" otvara se prozorčić "Propertis package definitions", u kojem se dodaju komponente propan, izobutan, n-butan, izopentane i n-pentane uz odabir Peng-Robinsonova modela za proračun termodinamičkih veličina. Nakon što se dodaju sve komponente, potrebno je potvrditi prozorčić "Assign properties to the default stream type?". Slika 2.2. slikovito prikazuje provedene korake.

Slika 2.2. Slikovit prikaz provedenih koraka za odabir komponenti: a) Opcija "*Settings*", b) Prozorčić "*Propertis package definitions*"; c) Odabir komponenti; d) Prozorčić "*Assign properties to the default stream type*?".

2.2.2. Definiranje pojne smjese

U programskom sučelju COFE ucrtava se ulazna struja materijalnih tokova koja predstavlja pojnu smjesu. Desnim klikom na ucrtanu struju, otvara se prozorčić i odabire opcija "*Edit stream*". Zatim se unose podaci karakteristični za pojnu smjesu: protok, temperatura, tlak i sastav. COCO računalni program automatski izračunava sve termodinamičke podatke pojne smjese potrebne za simulaciju. Na slici 2.3. dat je slikovit prikaz ucrtavanja ulazne struje pojne smjese te unošenja podataka za pojnu smjesu s prikazom svih izračunatih termodinamičkih podataka pojne smjese.

Stream		
 Connections 		
Connections		
Verall		LD-
pressure	827.37	кра
temperature	82.53	rt:
mole fraction [Propane]	0.05	
mole fraction [Isobutane]	0.15	
mole fraction [N-butane]	0.25	
mole fraction [Isopentane]	0.2	
mole fraction [N-pentane]	0.35	
flow	45.359	kmol/h
MW	0.065136551	ka / mol
Compound flows		
Propage	2.26795	kmol / h
leobutane	6 80285	kmol/h
N butane	11 22075	kmol / h
N-butane	11.339/3	KMOL7 N
Isopentane	9.0718	kmol / h
N-pentane	15.87565	kmol / h
 Phase Fractions 		
molar phaseFraction [Vapor]	0.10123747	
molar phaseFraction [Liquid]	0.89876253	
 Vapor composition 		
mole fraction [Propane]	0.12232748	
mole fraction [Isobutane]	0.20832543	
mole fraction [N-butane]	0.29924157	
mole fraction [Isopentane]	0.15293274	
mole fraction [N-pentane]	0.21717277	
- Liquid composition		
Liquid composition	0.041852962	
mole naction (Propane)	0.041032903	
mole fraction [Isobutane]	0.14343017	
mole fraction [N-butane]	0.24445338	
mole fraction [Isopentane]	0.2053017	
mole fraction [N-pentane]	0.36496179	
 Overall properties 		
enthalpy	-11823.39	J / mol
enthalpyF	-150859.39	J / mol
volume	0.00041244118	m≊ / mol
bubblePointTemperature	80.946535	°C
bubblePointPressure	855.46678	kPa
dewPointTemperature	91.755754	°C
dewPointPressure	668.5885	kPa
Vanor properties		
 vapor properties 	336 79525	mol / m³
internalE norqu	2560 2026	
internalEnergy	2000.2020	J Z mol
enthalpy	5019.829	J / mol
enthalpyh	-15885918	J / mol
entropy	12.579313	J / mol K
entropyF	328.39045	J / mol K
fugacity[Propane]	94.46597	kPa
fugacity[Isobutane]	150.58213	kPa
fugacitu[N-butane]	213.96039	kPa
ragacity[it batano]	103.22209	kPa
fugacity[Isopentane]		1.0
fugacity[Isopentane] fugacity[Nopentane]	144.74114	kPa
fugacity[Isopentane] fugacity[N-pentane] fugacity[N-pentane]	144.74114 0.93336513	kPa -
fugacity[Nobentane] fugacity[Nopentane] fugacity[Oefficient[Propane] fugacityCoefficient[Propane]	144.74114 0.93336513 0.87363771	kPa - -
fugacity[Ivextuals] fugacity[Nopentane] fugacity[Nopentane] fugacityCoefficient[Propane] fugacityCoefficient[Nobutane]	144.74114 0.93336513 0.87363771	kPa - -
fugacity[Ivediate] fugacity[Nopentane] fugacity[Nopentane] fugacityCoefficient[Propane] fugacityCoefficient[Ivediate] fugacityCoefficient[Nobutane]	144.74114 0.93336513 0.87363771 0.86419487	kPa - -
fugacity[Ivediatio] fugacity[Nopentane] fugacity[Coefficient[Propane] fugacityCoefficient[Isobutane] fugacityCoefficient[Isobutane] fugacityCoefficient[Isopentane]	144.74114 0.93336513 0.87363771 0.86419487 0.81577877	kPa - - -

Slika 2.3. Slikovit prikaz: a) ucrtavanja ulazne struje pojne smjese, b) unošenja podataka za pojnu smjesu.

1

a)

2.2.3. Ulaz u Chem-Sep

Nakon definiranja pojne smjese, u grafičko-korisničkom sučelju COFE ucrtava se jedinična operacija destilacije, klikom na ikonu "*Select unit operation*" te odabirom opcije ChemSep (Slika 2.4.a). Nakon unošenja destilacijske kolone u procesnu shemu (dijagram toka), klikom na samu kolonu otvara se prozorčić "*Unit operation column*" u kojem se preko opcije "*Edit*" ulazi u prozorčić "*New Units Operation*". Preko ovog prozorčića definiraju se uvjeti destilacije (npr. za naš slučaj odabire se "*Simple Distillation*", broj plitica "*11*", tlak "*827327 N/m*²" te "SI" sustav jedinica), a preko opcije "*Thermo*", odabire se "*ChemSep*", čime se ulazi u njegovo programsko sučelje (Slika 2.5).

Slika 2.4. Ucrtavanje jedinična operacije destilacije i ulaz u ChemSep.

1	
ſ	€ ChemSep (TM) (CAPE-OPEN) - Column_2
	File Edit Check Analysis Databanks Tools Help
	▋▶\$₩₽₩ĬŢĔ₩Æ₪₿₿◈ㅋ►
	CAPE-OPEN V CAPE-OPEN
	Column_2
	✓ Operation Status Unit is not valid: unit is not initialized
	X Properties X Thermodynamic: CAPE-OPEN Properties Expose energy ports Show all options
	Reactions
	Analysis
	- ✓ Pressures
1	Heaters/Coolers
1	
L	Column specs
L	Hesuits
	- Lables
L	Magna Thiala
	- Rating
	Solve options
	Paths

Slika 2.5. Izgled ChemSep korisničkog sučelja.

2.2.4. Definiranje radnih uvjeta kolone u ChemSep-u

Nakon ulaska u ChemSep korisničko sučelje, potrebno je definirati uvjete rada kolone. Klikom na opciju "Operation", pojavljuje se njegov prozorčić (Slika 2.6.) te se odabiru sljedeći uvjeti definirani u tablici 2.2. Konkretno, za navedeni primjer, odabire se sljedeće:

"Type of simulation - Equilibrium column Configuration: Operation: Simple Distillation Condenser: Total (liquid product) Rebojler: Partial (liquid product) Number of stages: 11 Feed stages: 6."

Slika 2.6. Definiranje radnih uvjeta kolone u ChemSep-u.

Uočava se da nakon unošenja podataka za kolonu, ChemSep je automatski skicira, kao što je prikazano na slici 2.6.

2.2.5. Proračun termodinamičkih svojstava

Za izračunavanje ravnotežnih podataka para-kapljevina i entalpije višekomponentne smjese primijenit će se Peng-Robinsonova jednadžba kao što je prikazano na slici 2.7. Odabirom opcije "*Load*", vrijednosti traženih parametara se dobiju iz baze podataka ChemSep. Pretpostavlja se da su parametri koji nisu definirani jednaki nuli.

L d ChamSon (IM) (CAUL	OPEN) - Column 2		
Chemsep (TWI) (CAPE-0	OPEIN) - Column_2		
File Edit Check Anal	lysis Databanks T	ools Help	
	HIER &	EO EB ES 🥹 🖚 🖬	h
CAPE-OPEN	✓ Thermodynamics	Y Physical properties	V Reactions
Title	⊂Select Thermodynam	nic Models	
Components			Enthalpy / Exergy
↓ ↓ ↓ Operation	K-value	EOS 🔹	Beference state Vanour V 298.1 (K)
Hoperties			
Physical properti	Equation of state	Peng-Robinson 76 🔻	Heat of formation Excluded
Feeds	Activity coefficient	-	Surroundings T 298.150 (K)
□ √ Specifications			
	Vapour pressure	<u></u>	Heat Capacity IG T correlation 💌
Pressures	F U U		
Heaters/Coolers	Enthalpy	Peng-Robinson 76	Heat Lapacity L Mole fraction a
Efficiencies			
Column specs	Select Thermodynam	nic Model parameters (when	required)
	Peng-Robinson 76		
Graphs			
- McCabe-Thiele		BIP estimation	1
Rating	Pearst	i.i	lk.ii
- Units		Propane - Isobutane	-7 800E-03
- Solve options	Doad	Propane - N-butane	0.00330000
- Paths		Propane - Isopentane	0.0111000
	Save	Propane - N-pentane	0.0267000
		Isobutane - N-butane	-4.000E-04
	Correlation	Isobutane - Isopentane	×
		Isobutane - N-pentane	×
		N-butane - Isopentane	0.0174000
		Isopentane - N-pentane	U.0174000
		Traphenrane - Michenrane	

Slika 2.7. Procjena K-vrijednosti i entalpije odabirom Peng-Robinsonove jednadžbe (*Napomena: EOS – engl. Equation of State model*).

2.2.6. Definiranje ulazne pojne smjese u ChemSep-u

Otvaranjem prozorčića "*Feeds*" provjeravaju se prethodno uneseni podaci kojima je definirana pojna smjesa prema podacima iz tablice 2.1. Konkretno, za navedeni primjer, odabire se sljedeće (Slika 2.8.): Stage: 6 Two-phase feed: Split State: p & V Pressure [N/m²]: 827371 Vapour fraction [-]: 0.000 Temperature [°C]: 82.53 Flowrates [kmol/h]: Priopane: Isobutane N-butane: Isopentane: N-pentane: Total flowrate: 45.359

File Edit Solve Analysi	is Databanks Tools I	Help
<u> </u>) × † 	£ [0] [B] [S] 📀 🖚 🖛
Title Components Operation Properties Thermodynamic:	Feeds Feeds Insert Feeds	Remove Molar flows
✓ Feeds ✓ Specifications ✓ Analysis ✓ Pressures ✓ Heaters/Coolers ✓ Efficiencies ✓ Column specs ✓ Column specs ✓ Results ✓ Tables Graphs Meacha Livid.	Name Stage Two-phase feed State Pressure (N/m2) Vapour fraction (-) Temperature (K) Flowrates (kmol/h): Propane Isobutane	Feed1 6 Split p & V 827370 0.0 2.26795 6.80386
McLabe-I hiele FUG Units Solve options Paths	N-butane Isopentane N-pentane Total flowrate	11.3397 9.07178 15.8756 45.3590

Slika 2.8. Definiranje ulazne pojne smjese u ChemSep-u.

2.2.7. Definiranje radnih uvjeta destilacijske kolone u ChemSep-u

U prozorčiću "Analysis" ChemSep definira stupnjeve slobode za simulaciju višekomponente smjese (Slika 2.9.).

Slika 2.9. Stupnjevi slobode za simulaciju višekomponente smjese u ChemSep-u.

Za simulaciju motivacijskog primjera pretpostavlja se da je tlak u koloni konstantan i iznosi p=827 kPa (slika 2.9.).

ſ	-ChemSep (TM) (CAPE-	OPEN) - Column_2		
L	File Edit Check Ana	lysis Databanks Tools	Help	
		HIERED	iB [5 📀 🛪 🖛	
1	CAPE-OPEN	🖌 Analysis 🖌 Pressu	res 🖌 Heaters/Coolers	V Efficiencies V Column specs
L	Title	Column Pressure Specifica	ations	
	Components			
ł	Properties	Condenser pressure	827371	(N/m2)
L	🗸 Thermodynamic:			
L		Column pressure	Constant pressure	•
L	Reactions	Top pressure	827371	(N/m2)
l			· · · · · · · · · · · · · · · · · · ·	(
L	Analysis	Pressure drop / stage	×	(N/m2)
ł	Pressures	Delters pressure	×	(C. 1/m2)
1	Heaters/Coolers	bottom pressure	J	[N/112]
L				Description All
L	E X Results			Hemove All
L	Tables			
L	- Graphs			
L	MCLabe-Intele			
1	- Units			
1	Solve options			
1	Paths			

Slika 2.10. Definiranje tlaka destilacijske kolone u ChemSep-u.

Nadalje se pretpostavlja da su plitice dobro izolirane te je gubitak topline zanemariv (tj. "*column heat loss*" = 0.00 J/s u prozorčiću "*Heater/Cooler*"), a stupanj toplinskog djelovanja je jednak jedan (tj. *default stage efficiency* = 1.00 u prozorčiću "*Efficiencies*").

2.2.8. Specifikacija uvjeta razdvajanja destilacije kolone u ChemSepu-u

Odabir opcije "*Column specification*" omogućuje definiranje uvjeta razdvajanje ulazne pojne smjese u destilacijskoj koloni, a prema uvjetima zadanim u Tablici 2.1. U navedenom primjeru se za specifikaciju vrha kolone odabire opcija "*Flexible*" te unosi jednadžba kojom se definira da je parna faza vrha kolone iznosi 79,378 kmol/h. Analogno, za specifikaciju proizvoda dna također se odabire opcija "*Flexible*" i definira protok destilata u iznosu od 22,18 kmol/h (Slika 2.10.).

ChemSep (TM) (CAPE-OPEN) - (Column_1					_
File Edit Check Analysis Da	atabanks Tools	Help				
	EZED	B IS 🔕 🛪 🖛				
CAPE-OPEN 🗸 Ana	alysis 🗸 Pressu	ires 🗸 Heaters/Coole	rs 🗸 Efficiencies 🔻	Column specs		
Title Column	Product Specifica	itions		1		
Components ↓ Operation Top p	product name	Тор	Condenser duty name	Qcondenser		
Physical properti	pecification	Flexible	▼ =	V2=[79.378 kmol /h]	formula	
Reactions						-
Feeds				,		
Specifications						
	m product name	Bottom	Reboiler dutu name	Oreboiler		
Heaters/Coolers	in product name	Bottom	rreboller duty hame	I di conici		
Efficiencies Bottor	m specification	Flexible		D=[22.18 kmol/h]	formula	
Column specs						
				1		-
- Graphs						
McCabe-Thiele						
Rating Product	t Guesses (optiona	l)	1			
	Use guesses for in	italizationF	eset	Add var	lable to monitor	-
Paths						

Slika 2.10. Specifikacija uvjeta razdvajanja destilacije kolone u ChemSepu-u.

2.2.9. Rješavanje simulacije u ChemSep-u

Ukoliko su prethodni koraci u ChemSep uredno odrađeni, ikonice na lijevoj strani programskog sučelja ChemSep bi trebale imati zelene oznake. Pojava crvene oznake ukazuje na pogreške te je prije pristupanja konačnom rješavanju simulacije potrebno provjeriti sve ulazne podatke (*Napomena: najčešće se problem javlja s neusuglašenim jedinicama*). Ukoliko su sve ikone zelene, klikom na opciju "*Solve*" pokreće se rješavanje simulacije (*engl. Runing simulator*), a klikom na ikonu "*Done*" se dobiju rezultati (Slika 2.11.).

SOL	NE						
-(ChemSep (TM) (CAPE-C	OPEN) - Column_1	-					
File Edit Check Anal	ysis Databanks Tools Help	1 1					
	TLEK-& DBB 0 /						
Title	Tables Graphs McCabe-Thiele Rating	FUG					
Components				1 - 1		1	
Properties	Select table: Streams	_	XL Edit	Сору	Font Prin		
	Stream	Feed1	V.Feed1	L.Feed1	Тор	Bottom	
Reactions	Stage	6	6	6	1	11	
⊟ ✓ Specifications	Pressure (N/m2) Vapour fraction (-)	827370 0.101237	827370 1.00000	827370 0.000000	827370 0.000000	827370 0.000000	Running cimulator - CS 1 8-1 con
Analysis	Enthalpy (J/kmol)	356.543 -1.196E+07	356.543	356.543	335.526 -1.535E+07	382.595 -1.050E+07	
Heaters/Coolers	Entropy (J/kmol/K)	-34/22./	4 50201	40 7670	-49649.3	-32885.5	78-78-4 Isopentane 109-66-0 N-pentane
Column specs	Total mass flow (kg/s)	0.820702	0.0780055	0.742697	0.360035	0.460667	Determining feed conditions Solving PV flash
⊟ √ Results	Liquid std.vol.flow (m3/s)	0.00122050	010502200	0.00122891	6.2523E-04	7.3659E-04	Run level: Initialization Generating initial flow profiles
Graphs	Mole flows (kmol/h) Propane	2.26795	0.581152	1.68680	2.26703	9.2178E-04	Generating initial composition profiles Init 62 milliseconds
Rating	Isobutane N-butane	6.80386 11.3397	0.999939 1.43753	5.80392 9.90222	6.61751 10.5325	0.186351 0.807294	Run level: Complete model
FUG	Isopentane N-pentane	9.07178 15.8756	0.620458	8.45133 14.9227	1.47277 1.29024	7.59902	Iteration log(Err/Tol) 0 3.7942
- Solve options	Mole fractions (-)	0.0500000	0.100007	0.0413766	0 103310	3 07005 05	1 4.5785 2 3.8605
Paths	Isobutane	0.150000	0.217756	0.142368	0.298355	0.00803964	3 1.8028 4 -2.5534
	Isopentane N-pentane	0.200000	0.135117	0.207308	0.0664007	0.327841	Run level: Report Convergence obtained in 4 iterations
	Mass flows (kg/s)						Time 16 miliseconds Cleanup called with T
	Propane Isobutane	0.0277805 0.109850	0.00711863 0.0161443	0.0206619 0.0937059	0.0277692 0.106841	1.1291E-05 0.00300868	FixMem driver done Process ended
	N-butane Isopentane	0.183083 0.181814	0.0232093 0.0124350	0.159874 0.169379	0.170049 0.0295167	0.0130340 0.152297	
	N-pentane	0.3181/4	0.0190983	0.299076	0.0258586	0.292316	
	Propane Trobutane	0.0338497	0.0912580	0.0278201	0.0771291	2.4510E-05	Done
	N-butane Tsopentane	0.223081	0.297534	0.215262	0.472313	0.0282938	
	N-pentane	0.387686	0.244833	0.402689	0.0718224	0.634549	
	Combined feed fractions (- Propane	1.00000	0.256246	0.743754	0.999594	4.0643E-04	
	Isobutane N-butane	1.00000	0.146967 0.126769	0.853034	0.972611 0.928808	0.0273890 0.0711915	
	Isopentane N-pentane	1.00000	0.0683943 0.0600246	0.931606 0.939975	0.162346 0.0812718	0.837654 0.918728	
	Vapour :						
							Done

Slika 2.11. Rješavanje simulacije u ChemSep-u.

3. REZULTATI

Na slikama 3.1.-3.4 prikazani su rezultati simulacije višekomponentne smjese primjenom COFE i ChemSep programskog sučelja.

lect table: Streams	•	XL Edit	Сору	Font Print	
Stream	Feed1	V.Feed1	L.Feed1	Тор	Bottom
Stage Pressure (N/m2) /apour fraction (-) Femperature (K) Enthalpy (J/kmol) Entropy (J/kmol/K)	6 827370 0.101237 356.543 -1.196E+07 -34722.7	6 827370 1.00000 356.543	6 827370 0.000000 356.543	1 827370 0.000000 335.526 -1.535E+07 -49649.3	11 827370 0.000000 382.595 -1.050E+07 -32885.5
Total molar flow (kmol/h) Total mass flow (kg/s) /apour std.vol.flow (m3/s) iguid std.vol.flow (m3/s)	45.3590 0.820702 0.0321865 0.00122050	4.59201 0.0780055 0.0302186	40.7670 0.742697	22.1800 0.360035	23.1790 0.460667 7.3659E-04
Nole flows (kmol/h) Propane Isobutane N-butane Isopentane N-pentane	2.26795 6.80386 11.3397 9.07178 15.8756	0.581152 0.999939 1.43753 0.620458 0.952930	1.68680 5.80392 9.90222 8.45133 14.9227	2.26703 6.61751 10.5325 1.47277 1.29024	9.2178E-04 0.186351 0.807294 7.59902 14.5854
Nole fractions (-) Propane Esobutane N-butane Sopentane N-pentane	0.050000 0.150000 0.250000 0.200000 0.350000	0.126557 0.217756 0.313050 0.135117 0.207519	0.0413766 0.142368 0.242898 0.207308 0.366049	0.102210 0.298355 0.474863 0.0664007 0.0581714	3.9768E-05 0.00803964 0.0348287 0.327841 0.629251
Mass flows (kg/s) Propane Isobutane W-butane Sopentane W-pentane	0.0277805 0.109850 0.183083 0.181814 0.318174	0.00711863 0.0161443 0.0232093 0.0124350 0.0190983	0.0206619 0.0937059 0.159874 0.169379 0.299076	0.0277692 0.106841 0.170049 0.0295167 0.0258586	1.1291E-09 0.00300866 0.0130340 0.152293 0.292310
Mass fractions (-) Propane Isobutane N-butane Isopentane N-pentane	0.0338497 0.133849 0.223081 0.221534 0.387686	0.0912580 0.206963 0.297534 0.159412 0.244833	0.0278201 0.126170 0.215262 0.228059 0.402689	0.0771291 0.296753 0.472313 0.0819828 0.0718224	2.4510E-05 0.00653115 0.0282938 0.330601 0.634549
Combined feed fractions (-) Propane Esobutane N-butane Sopentane N-pentane	1.00000 1.00000 1.00000 1.00000 1.00000	0.256246 0.146967 0.126769 0.0683943 0.0600246	0.743754 0.853034 0.873231 0.931606 0.939975	0.999594 0.972611 0.928808 0.162346 0.0812718	4.0643E-04 0.0273890 0.0711915 0.837654 0.918728
/apour: Mole weight (kg/kmol) Density (kg/m3) Std.density (kg/m3) Viscosity (N/m2.s) Heat capacity (J/kmol/K) Thermal cond. (J/s/m/K)	61.1541 20.4776 2.58138 8.8728E-06 128054 0.0232665	61.1541 20.4776 2.58138 8.8728E-06 128054 0.0232665			
Liquid: Mole weight (kg/kmol) Density (kg/m3) Std.density (kg/m3) Viscosity (N/m2.s) Heat capacity (J/kmol/K) Thermal cond. (J/s/m/K) Surface tension (N/m)	65.5851 525.992 604.354 1.0586E-04 183907 0.0846516 0.00720223		65.5851 525.992 604.354 1.0586E-04 183907 0.0846516 0.00272223	58.4368 518.459 575.840 1.1059E-04 159425 0.0864619 0.00726166	71.54 517.10 625.40 9.2073E-0 2001 0.08174 0.006399

Slika 3.1. Rezultati simulacije procesnih struja pojne smjese (*engl. feed*), destilata (*engl. top*) i proizvoda dna (*engl. botom*).

	Product	Feed	(kmol/h) Vapour	Flow rates Liquid	Pressure (N/m2)	Temperatur (K)	Stage
τ.	22,1800		RR=2.57880	57,1978	827370	335.530	1
			79.3778	55.4362	827370	344.540	2
			77.6162	53.9296	827370	351.420	3
			76.1096	52.9088	827370	356.950	4
			75.0888	52.3446	827370	361.140	5
		45.3590	69.9326	93.3998	827370	364.530	6
			70.2208	93.6740	827370	369.370	7
			70.4950	94.0628	827370	373.700	8
			70.8839	94.5501	82/3/0	377.380	19
	22 1700		/1.3/11	95.0359 PP-2 10000	82/3/0	380.330	10
-	23.1750		(1.0)/0	51-0.10005	027570		
	Deeduct	Food	(kg/s)	Flow rates	(N/m2)	Temperatur	Stage
	Produce	reeu	vapour	Liquiu	(N/m2)		
L	0.360035		RR=2.57880	0.928460	827370	335.530	1
			1.28850	0.941684	827370	344.540	2
			1.30172	0.949336	827370	351.420	3
			1.30937	0.957406	827370	356.950	4
			1.31744	0.965798	827370	361.140	5
		0.820702	1.24783	1.74761	827370	364.530	<u>6</u>
			1.28694	1./83/3	82/3/0	369.3/0	
			1.32306	1.81843	82/3/0	373.700	ě
			1 22055	1 97672	827370	220 220	10
	0 460667		1 41605	1.0/0/2	827370	380.330	10

Slika 3.2. Rezultati simulacije profila protoka procesnih struja duž kolone, odnosno s porastom broja plitica.

Mass and Energy Balances	
Stream / Apparatus	Mass (kg/s) Energy (J/s) Exergy (J/s)
Feed1 Top Bottom Qcondenser Qreboiler	0.820702 -150733 -20293.1 -0.360035 94608.3 3405.75 -0.460667 67607.0 4477.74 -416763 -46425.4 405281 89452.3
Balance	-2.980E-08 -0.0312500 30617.3
Thermodynamic efficiency =	.288416
Component discrepancies: a	absolute (kmol/h), relative ()
Propane Isobutane N-butane Isopentane	-7.149E-09 -3.152E-09 -9.716E-08 -1.428E-08 5.1716E-07 4.5606E-08 1.7551E-07 1.9347E-08

Slika 3.3. Rezultati simulacije bilance tvari i energije.

Select tabl	e: Stage efficienc	ies	_
0'Conn	ell efficiend	у	
Stage	Efficiency	Angle	
2 3 4 5 6 7 8 9 10	0.694443 0.697869 0.700631 0.703559 0.705571 0.711206 0.716285 0.720595 0.723740	0.000000 0.000000 0.000000 0.000000 0.000000	

Slika 3.4. Rezultati simulacije efikasnosti izračunate prema jednadžbi O`Connell-i duž kolone, odnosno s porastom broja plitica.

	e. J <u>Eleden comp</u>	osition promes			Lopy Font
Liquid	x compositi	on profiles			
Stage	Propane	Isobutane	N-butane	Isopentane	N-pentane
1	0.102210	0.298355	0.474863	0.0664007	0.0581714
2	0.0407086	0.236843	0.465765	0.129483	0.127200
3	0.0208538	0.180372	0.403735	0.189032	0.206007
4	0.0146742	0.139508	0.330646	0.233119	0.282053
5	0.0125607	0.113538	0.269642	0.257825	0.346433
6	0.00991146	0.0956937	0.225990	0.269795	0.398610
7	0.00366641	0.0672615	0.181998	0.301351	0.445722
8	0.00128391	0.0440667	0.135474	0.325546	0.493629
9	4.2804E-04	0.0269972	0.0935492	0.338778	0.540247
10	1.356/E-04	0.01541/6	0.0598180	0.339520	0.585109
11 امنیستا	3.9766E-05	0.00805964	0.0348287	0.327841	0.629251
Liquia	x composition	on profities	(WL)		
Stage	Propane	Isobutane	N-butane	Isopentane	N-pentane
1	0.0771291	0.296753	0.472313	0.0819828	0.0718224
2	0.0293549	0.225109	0.442691	0.152769	0.150075
3	0.0145111	0.165433	0.370296	0.215217	0.234543
4	0.00993328	0.124474	0.295012	0.258192	0.312389
5	0.00833885	0.0993510	0.235950	0.280056	0.376304
6	0.00648853	0.0825717	0.195001	0.288981	0.426957
7	0.00235851	0.0570299	0.154313	0.317174	0.469125
8	8.1351E-04	0.0368025	0.113142	0.337495	0.511747
9	2.6793E-04	0.0222743	0.0771836	0.346967	0.553307
10	8.4159E-05	0.0126052	0.0489064	0.344578	0.593826
11	2.4510E-05	0.00653115	0.0282938	0.330601	0.634549

Slika 3.5. Rezultati simulacije sastava kapljevite faze duž kolone, odnosno s porastom broja plitica.

elect table:	K-value profiles	3	×	- Edit	Сору Бо
K-value	profiles				
Stage	Propane	Isobutane	N-butane	Isopentane	N-pentane
1	2.17405	1.07566	0.856327	0.423686	0.379732
2	2.51078	1.25972	1.01953	0.512813	0.457323
3	2.79487	1.41054	1.16008	0.589616	0.521701
4	3.03682	1.53937	1.28374	0.657582	0.577638
5	3.22681	1.64200	1.38422	0.713168	0.623271
6	3.38082	1.72751	1.46856	0.760468	0.662625
7	3.59206	1.85288	1.58842	0.831700	0.723496
8	3.78442	1.96824	1.70061	0.898925	0.780702
9	3,94992	2.06864	1,79996	0.958728	0.831620
10	4.08428	2.15040	1.88271	1.00828	0.873926
11	4,18968	2,21372	1,94893	1.04711	0.907221

Slika 3.6. Rezultati simulacije K-vrijednosti duž kolone, odnosno s porastom broja plitica.

Select tab	le: Enthalpies	, entropies, entro	ppy produc	XL E	dit Copy	Font	Print
Stage	т (К)	Hv (J/kmol)	Hl (J/kmol)	5v (J/kmol/K	51 (J/kmol/K	Q (J/s)	Sirr (J/kmol/K
1	335.530	-1.535E+07	-1.535E+07	-49649.3	-49649.3	-416763	16,5601
2	344.540	3.5456E+06	-1.468E+07	5932.43	-45603.6		19,8448
3	351.420	4.4523E+06	-1.414E+07	9163.14	-42453.2		11.4106
4	356.950	5.2157E+06	-1.366E+07	11939.8	-40086.5		6.86145
5	361.140	5.8198E+06	-1.325E+07	14018.0	-38472.3		20.9664
6	364.530	6.3288E+06	-1.288E+07	15503.8	-37324.0		-5.45381
7	369.370	7.1009E+06	-1.228E+07	17183.0	-35811.9		8.55861
8	373.700	7.8191E+06	-1.172E+07	18543.3	-34589.9		7.98305
9	377.380	8.4539E+06	-1.122E+07	19461.1	-33699.8		7.11892
10	380.330	8.9778E+06	-1.081E+07	19912.2	-33145.5		6.15217
11	382.600	9.3855E+06	-1.050E+07	19974.7	-32885.5	405281	2.68660
Total	entropy p	roduction =	102.689	(J/kmol/K))		

Slika 3.7. Rezultati simulacije entalpije i entropije.

Select tab	elect table: Physical properties XL Edit Copy Font Print										
Stage	Vapour Density kg/m3	Liquid Density kg/m3	Vapour Viscosity N/m2.s	Liquid Viscosity N/m2.s	Vapour Molecular weight kg/kmol	Liquid Molecular weight kg/kmol	Vapour Heat capacity J/kmol/K	Liquid Heat capacity J/kmol/K	Vapour Thermal conductivi J/s/m/K	Liquid Thermal conductivi J/s/m/K	Surface tension N/m
1 2 3 4 5 6 7 8 9 10 11	19.8100 20.3050 20.5973 20.8218 21.0100 21.1998 21.5677 21.9069 22.2129 22.4673 22.6595	518.459 520.410 522.252 523.293 523.569 523.276 522.055 520.763 519.433 518.200 517.160	8.6220E-06 8.7120E-06 8.7895E-06 8.8980E-06 8.9302E-06 8.9302E-06 9.0063E-06 9.035E-06 9.0524E-06 9.0639E-06	1.1059E-04 1.0765E-04 1.0560E-04 1.0233E-04 1.0233E-04 9.8369E-05 9.6072E-05 9.4156E-05 9.2792E-05 9.2073E-05	55.7108 58.4368 60.3764 63.1624 64.2359 65.9773 67.5654 68.9573 70.0897 70.9436	58.4368 61.1525 63.3717 65.1435 66.4228 67.3597 68.5508 69.5956 70.4471 71.0909 71.5476	112988 120614 125999 130266 133615 136551 141336 145699 149541 152696 155111	159425 168453 175519 181258 185547 188580 191798 194335 196951 198847 200188	$\begin{array}{c} 0.0216217\\ 0.0222747\\ 0.0227901\\ 0.0232000\\ 0.0234998\\ 0.0237253\\ 0.024093\\ 0.0242481\\ 0.0244356\\ 0.0245741\\ 0.0246735 \end{array}$	0.0864619 0.0856978 0.0851486 0.0846504 0.0842181 0.083371 0.0833430 0.0829011 0.0824542 0.0820693 0.0817448	0.00726166 0.00718619 0.007013477 0.00707575 0.007071294 0.00694390 0.00668147 0.00668147 0.00656672 0.006647188 0.00639972

Slika 3.8. Rezultati simulacije fizikalnih svojstva višekomponentne smjese duž kolone odnosno s porastom broja plitica.

4. RASPRAVA

4.1. Analiza rezultata simulacije višekomponentne smjese

U motivacijskom primjeru simulacije višekomponentne smjese propana, izobutana, n-butana, izopentana i n-pentana, pri zadanim uvjetima simulacije:

- ukupan broj plitica: 11

- broj plitice na kojoj ulazi pojna smjesa: 6
- tlak: p=827 kPa
- protok parne faze na vrhu kolone, V =79,378 kmol/h

- protok destilata, D=22,181 kmol/h

dobiveni su brojčani rezultati prikazani na slikama 3.1-3.8., odnosno njihov grafički prikaz slikama 4.1.-4.8.

ChemSep automatski odabire dvije ključne komponente, n-butan kao laku ključnu (*engl. light key, LK*) i izopentan kao tešku ključnu (*engl. heavy key, HK*), a rezultat simulacije slikovito je prikazan na slici 4.1.

Slika 4.1. Rezultat simulacije višekomponentne smjese u COFE programskom sučelju.

Slika 4.1. prikazuje da se ulazna pojna smjesa razdvaja na destilat u kojem se izdvajaju n-butan kao laka ključna komponenta te izobutan i propan. Na dnu kolone se izdvaja izopentan kao teška ključna komponenta te n-pentan. Ukoliko se analiziraju molni udijeli komponenti u pojnoj smjesi, vidljivo je da udio n-butana, izobutana i

propana raste u destilatu, a istovremeno se njihov udio smanjuje u proizvodu dna. Za razliku od njih, molni udio izopentana i n-pentan se u odnosu na pojnu smjesu povećava u proizvodu dna. Također su izračunate vrijednosti molnih protoka svih komponenti u pojnoj smjesi, destilatu i proizvodu dna. Vezano uz označavanje broja plitica, vidljivo je da broj plitica raste od vrha kolone prema dnu.

Rezultati prikazani na slici 4.1. potvrđeni su grafičkim prikazom profila molnih udjela kapljevite, odnosno parne faze pojedine komponente duž kolone, odnosno s porastom broja plitica (slika 4.2.). Komponente hlapljivije od lako ključne (n-butan) su koncentrirane iznad ulaza pojne smjese, a komponente manje hlapljive od teške ključne (i-pentana) su koncentrirane ispod ulaza pojne smjese. Molni udjeli dviju ključnih komponenti pokazuju svoje maksimume i to laka ključna iznad ulaza pojne smjese, a teška ključna ispod ulaza pojne smjese. Vidljivo je da profili kapljevitih faza dviju ključnih komponenti n-butana (plava boja) i izopentana (roza boja) imaju suprotan oblik (Slika 4.2.a.), što ukazuje da se njihovo razdvajanje ubrzava s porastom broja plitica. Analogni rezultati se dobiju i iz grafičkog prikaza molnih udjela parne faze pojedine komponente duž kolone odnosno, s porastom broja plitica (slika 4.2.b). Također se uočava neznatno smanjenje molnih udjela lake ključne komponente tijekom prvih nekoliko plitica, a što je potrebno kako bi se sustav prilagodio povećanju sastava lakše hlapljivih komponenti. Slični argumenti odnose se na neznatno smanjenje molnih udjela

Slika 4.2. a) Profil molnog udjela kapljevite faze pojedine komponente duž kolone, odnosno s porastom broja plitica; b) Profil molnog udjela parne faze pojedine komponente duž kolone, odnosno s porastom broja plitica.

Na slici 4.3. prikazan je profil K-vrijednosti pojedine komponente duž kolone, odnosno s porastom broja plitica.

Slika 4.3. Grafički prikaz profila K-vrijednosti pojedine komponente duž kolone, odnosno s porastom broja plitica.

Vidljivo je da K-vrijednosti pokazuju lagani porast za sve komponente s porastom broja plitica, ukazujući na lakše razdvajanje komponenti s povećanjem broja plitica.

Slika 4.4. a) Profil temperature duž kolone, odnosno s porastom broja plitica; b) Profil tlaka duž kolone, odnosno s porastom broja plitica.

Rezultati na Slici 4.4. pokazuje rast temperature s porastom broja plitica te da se vrijednosti temperature kreću u intervalu 62,34-109,53 °C, a što odgovara 335,53-

382,60 K. Drugim riječima, temperatura se povećava od vrha kolone prema dnu, a što je uobičajeno za većinu destilacijskih sustava. Za razliku od temperature, tlak u koloni je konstantan duž kolone, odnosno ne mijenja se s porastom broja plitica.

Slika 4.5. prikazuje profil protoka parne i kapljevite faze duž kolone. Vidljivo je da se profil parne faze duž kolone neznatno mijenja za razliku od profila kapljevite faze koji je znatno povećan s povećanjem broja plitica. Najznačajnija promjena porasta protoka kapljevite faze je upravo u razini plitice na kojoj ulazi pojna smjesa. Naime, da je pojna smjesa bila djelomično u parnoj fazi, vidljive bi bile promjene profila protoka i parne i kapljevite faze duž kolone. Međutim, u ovom primjeru je ulazna pojna smjesa zasićena kapljevina te je drastična promjena profila vidljiva samo za kapljevitu fazu.

Slika 4.5. Grafički prikaz profila protoka parne i kapljevite faze duž kolone.

Slika 4.6. prikazuje profil brzine prijenosa tvari (*engl. mass transfer rate*), odnosno pokretačke sile procesa duž kolone (*engl. driving force*). Vidljivo je da profili izopentana i n-pentana imaju pozitivne vrijednosti brzine prijenosa tvari budući zaostaju u kapljevitoj fazi i izdvajaju se na dnu kolone u obliku proizvoda dna. Za razliku od nbutana, izobutana i propana, koji se izdvajaju u parnoj fazi i za njihovo izdvajanje potrebno je dovesti toplinu iz isparivača. Profil brzine prijenosa tvari duž kolone poklapa se s profilom pokretačke sile procesa.

Slika 4.6. Grafički prikaz profila: a) brzine prijenosa tvari duž kolone; b) pokretačke sile procesa duž kolone.

ChemSep automatski odabire dvije ključne komponente, n-butan kao laku ključnu i izopentan kao tešku ključnu, a koje se koriste kao baza za konstrukciju McCabeThiele-vog dijagrama (Slika 4.7.). Pravci u dijagramu imaju isto značenje kao i kod McCabe-Thielovih dijagrama za binarne sustave; a broj ucrtanih pravokutnih trokuta odgovara broju ravnotežnih stanja, odnosno broju plitica. Činjenica da ucrtani trokuti ne dodiruju uglove dijagrama gdje X = Y = 1 i X = Y = 0 pokazuje da razdvajanje nije posebno oštro. Dobiveni rezultati simulacije ukazuje da bi povećanje broja plitica svakako bilo vrijedno simulirati, budući doprinose boljoj oštrini, odnosno većoj čistoći odvajanja između dviju ključnih komponenti.

Slika 4.7. McCabe-Thielov dijagram ključnih komponenti.

Kooijiman & Taylor (2007) sugeriraju izračun omjera kapljevite faze komponenti, nazvan "*Key ratio*", R_{ij}, a prema jednadžbi:

$$\mathbf{R}_{ij} = \frac{\mathbf{x}_i}{\mathbf{x}_j} \tag{4-1}$$

gdje je:

 x_i – molni udio komponente "i" u kapljevitoj fazi, x_j – molni udio komponente "j" u kapljevitoj fazi, -. Rezultati simulacije omjera "key ratio" za višekomponentu smjesu su prikazani na slici 4.8. Ovaj grafički prikaz je zgodan budući da izgled krivulja ukazuje u kolikoj je mjeri ulaz pojne smjese na odabranoj plitici odgovarajući. Ako krivulje pokazuju kontinuiranost, odabrana plitica za ulaz pojne smjese je odgovarajuća. Međutim, ukoliko krivulje pokazuju promjene u smjeru kontinuiranosti, kao što je slučaj pri simulaciji ovog primjera višekomponentne smjese, ulaz pojne smjese nije na najboljem mogućem mjestu.

gdje je: $R_{1-2}=x_1/x_2$, $R_{2-3}=x_2/x_3$; $R_{3-4}=x_3/x_4$; $R_{4-5}=x_4/x_5$

Slika 4.8. Rezultati simulacije omjera kapljevite faze komponenti tzv. "key ratio" za višekomponentu smjesu.

ChemSep omogućuje i izračunavanje primjenom FUG metode, odnosno Fenske-Underwood-Gilliland Analysis, a rezultati izračunavanja za ključne komponente nbutan i izopentan su prikazani na slici 4.9.

Tables Graphs McC	Cabe-Thiele Rating FUG				
Fenske-Underwood-Gi	Ililand Analysis				
	Auto select key comp's				
Light N	I-butane	Recovery in D	0.95	Xlb = 0.024696	×ld = 0.480921
Heavy Is	sopentane 💌	Recovery in B	0.837654	Xhd = 0.0657478	Xhb = 0.330986
Relative volatility	ieometric average 📃 💌	Design RR/RRmin	1.2		
Relative volatility = 1	.939541	q feed = 0.898763			
Minimum number of s	stages (Fenske) = 6.921736	D = 0.0062223 (kn	nol/s)		
Minimum reflux ratio (Underwood) = 1.225962	B = 0.00637742 (k	.mol/s)		
Number of Stages (E	duljee) = 16.50817	phi = 1.366289			
Reflux ratio (Eduljee)	= 1.471154	err = 5.937531E-06	6		
Feed stage (Fenske)	= 12.0063				

Slika 4.9. Primjena FUG metode, odnosno Fenske-Underwood-Gilliland Analysis za ključne komponente n-bitan i izopentan u ChemSep-u.

4.2. Parametarska analiza

Parametri koji imaju značajan utjecaj na oštrinu odvajanja višekomponentne smjese su broj plitica iznad i ispod ulaza pojne smjese, omjer refluksa te protok proizvoda. Pri simulaciji destilacije, ovi parametri se sagledavaju u odnosu na toplinsku dužnost rebojlera. U tu svrhu se primjenjuje Parametarska analiza u ChemSep. Odabirom naredbe "*Analysis*", otvara se opcija "*Parametric study*". Rezultat parametarske analize dat je na Slici 4.10.

Slika 4.10. Simulacija primjenom parametarske analize.

Slika 4.11. Grafički prikaz utjecaja refluksnog omjera na molni udio n-butana u proizvodu dna i izopentana u destilatu te toplinsku dužnost rebojlera.

Slika 4.11. pokazuje kako je opadanje molnog udjela n-butana u proizvodu dna i izopentana u destilatu u ovisnosti o porastu toplinske dužnosti rebojlera i refluksnog omjera. Dakle, povećanje omjera refluksa ima željeni učinak na oštrinu odvajanja, odnosno poboljšanja čistoće produkta (destilata i proizvoda dna). Međutim, postizanje bolje oštrine odvajanja popraćeno je povećanjem pogonskih troškova, posebno za potrebe rada isparivača (reboilera) kao i investicijskih troškova, budući je potreban veći stupac kolone za prilagodbu povećanog unutarnjeg toka. Također je vidljivo da krivulje molnih udjela n-butana u proizvodu dna i izopentana u destilatu neće dosegnuti vrijednost nule, odnosno čistoća produkta neće porasti značajno, neovisno o porastu omjera refluksa. To ukazuje da se daljnje poboljšanje oštrine odvajanja, odnosno povećanje čistoće proizvoda može postići samo promjenom ulaznih specifikacija za novu simulaciju.

5. ZAKLJUČCI

Temeljem rezultata simulacije destilacije višekomponentne smjese propana, izobutana, n-butana, izopentana i n-pentana, pri zadanim uvjetima simulacije (broj plitica 11, broj plitice na kojoj ulazi pojna smjesa 6, tlak 827 kPa, protok parne faze na vrhu kolone 79,378 kmol/h, protok destilata 22,181 kmol/h, kolona opremljena s kondenzatorom s potpunim ukapljivanjem) mogu se izvesti sljedeći zaključci:

- ChemSep automatski odabire dvije ključne komponente, n-butan kao laku ključnu i izopentan kao tešku ključnu

 Na vrhu kolone se izdvaja destilat u kojem su n-butan kao laka ključna komponenta te izobutan i propan, a na dnu kolone se izdvaja izopentan kao teška ključna komponenta te n-pentan

 Molni udijeli komponenti n-butana, izobutana i propana rastu u destilatu dok se njihov udio smanjuje u proizvodu dna u odnosu na njihove udjele u pojnoj smjesi. Za razliku od njih, molni udio izopentana i n-pentana se u odnosu na pojnu smjesu povećava u proizvodu dna

 Komponente hlapljivije od lako ključne (n-butan) su koncentrirane iznad ulaza pojne smjese, a komponente manje hlapljive od teške ključne (izopentan) su koncentrirane ispod ulaza pojne smjese

- K-vrijednosti pokazuju lagani porast za sve komponente s porastom broja plitica, ukazujući na bolje razdvajanje komponenti s povećanjem broja plitica

 Temperatura se povećava od vrha kolone prema dnu, a što je uobičajeno za većinu destilacijskih sustava. Za razliku od temperature, tlak u koloni je konstantan duž kolone, odnosno ne mijenja se s porastom broja plitica

 Profil parne faze duž kolone neznatno se mijenja za razliku od profila kapljevite faze kod kojeg je značajna promjena upravo na plitici na kojoj ulazi pojna smjesa

- Profili izopentana i n-pentana imaju pozitivne vrijednosti brzine prijenosa tvari za razliku od n-butana, izobutana i propana, koji se izdvajaju u parnoj fazi

- Opadanje molnog udjela n-butana u proizvodu dna i izopentana u destilatu je u ovisnosti o porastu toplinske dužnosti rebojlera i refluksnog omjera

 Poboljšanje oštrine odvajanja, odnosno povećanje čistoće proizvoda može se postići samo promjenom ulaznih specifikacija za novu simulaciju.

6. LITERATURA

- 1. <u>https://hr.wikipedia.org/wiki/In%C5%BEenjerstvo</u>, Pristupljeno: 06.08.2018.
- J. Perić, N. Vukojević Medvidović, *Projektiranje procesa recenzirani nastavni materijal za predavanja i seminar*, Kemijsko tehnološki fakultet Sveučilišta u Splitu, listopad 2014. (<u>https://www.ktf.unist.hr/index.php/knjiznica-3/repozitorij-265?start=40</u>), Pristupljeno: 06.08.2018.
- Perry Chemical Engineering Handbook, 7th Edition, 1986. (pdf) (URL:http://nigc.ir/portal/Images/Images_Traning/files/files/chemist%20book% 20cd1/Perrys%20Chemical%20Engineers%20Handbook%207thEd%20eBook/P errys.Chemical.Engineers.Handbook.7th.Ed.eBook-EEn.pdf; Pristupljeno: 05.07.2018.
- 4. <u>http://studentski.hr/vijesti/hrvatska/racunalna-sigurnost-zasigurno-je-tema-koja-</u> <u>ce-uskoro-svima-postati-bliska</u>, Pristupljeno: 17.06.2018.
- COCO programski sustav. Dostupno na: <u>https://www.cocosimulator.org/</u>, Pristupljeno: 28.01.2018.
- 6. Jošić M., Jaćimović N., 3D projektovanje procesnih postrojenja pomoću specijalizovanih softverskih aplikacija najnovije generacije, Procesna tehnika (2011), 36-41.
- 7. <u>http://studentski.hr/vijesti/hrvatska/racunalna-sigurnost-zasigurno-je-tema-koja-</u> <u>ce-uskoro-svima-postati-bliska</u>, Pristupljeno: 17.06.2018.
- 8. Beer E., *Destilacija*, HDKI /Kemija u industriji, Zagreb, 2006.
- 9. <u>https://translate.google.hr/translate?hl=hr&sl=en&u=https://www.aspentech.com</u> /products/engineering/aspen-plus/&prev=search, Pristupljeno: 18.06.2018.
- 10. Kooijiman H.A., Taylor R. *The ChemSep Book*, 2nd ed., Dostupno na: http://chemsep.org/book/docs/book2.pdf, Pristupljeno: 10.07.2018.)
- Towler G., Sinnott R., Chemical engineering design Principles, practice and economics of plant and process design, Butterworth-Heinemann, Amsterdam, 2008.
- 12. <u>https://www.cocosimulator.org/index_links.html</u>, Pristupljeno: 18.06.2018.
- Beer E., *Priručnik za dimenzioniranje uređaja kemijske procesne industrije*, HDKI/Kemija u industriji, Zagreb, 1994.
- 14. Šef F., Olujić Ž., *Projektiranje procesnih postrojenja*, SKTH/Kemija u industriji, Zagreb, 1988.

- 15. H. Koojiman and R. Taylor, CemSep Tutorial: Simple (Multicomponent) Distillation; URL <u>http://www.chemsep.org/downloads/docs/ChemSepTutorial_MulticomponentDi</u> <u>stillation.pdf</u>, Pristupljeno: 05.07.2018.
- 16. Seider W. D., Seader J. D., Lewin D. R., *Process design principles, synthesis, analysis, and evaluation*, John Wiley & Sons, Inc., New York [etc.], 1999.
- Seider W. D., Seader J. D., Lewin D. R., Product & process design principles, synthesis, analysis and evaluation, 2nd ed., John Wiley & Sons, Inc., New York [etc.], 2004.