Studija utjecaja štetnih otpada na procese hidratacije i fizikalno-kemijska te mehanička svojstva cementnih kompozita

Barbir, Damir

Doctoral thesis / Disertacija

2013

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Split, Faculty of Chemistry and Technology / Sveučilište u Splitu, Kemijsko-tehnološki fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:167:014516

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-04

Repository / Repozitorij:

Repository of the Faculty of chemistry and technology - University of Split

SVEUČILIŠTE U SPLITU KEMIJSKO TEHNOLOŠKI FAKULTET

DAMIR BARBIR

STUDIJA UTJECAJA ŠTETNIH OTPADA NA PROCESE HIDRATACIJE I FIZIKALNO-KEMIJSKA TE MEHANIČKA SVOJSTVA CEMENTNIH KOMPOZITA

DOKTORSKA DISERTACIJA

SPLIT, srpanj 2013.

Sveučilište u Splitu Kemijsko-tehnološki fakultet u Splitu Povjerenstvo za ocjenu doktorskog rada

Pristupnik Damir Barbir, dipl. ing. predao je izrađeni doktorski rad dana

13. svibuja 2013.

Povjerenstvo u sastavu: Dr. sc. Petar Krolo, red. prof. Dr. sc. Juraj Šipušić, izv. prof. Dr. sc. Pero Dabić, izv. prof.

Kemijsko-tehnološkog fakulteta u Splitu Fakulteta kemijskog inženjerstva i tehnologije u Zagrebu Kemijsko-tehnološkog fakulteta u Splitu

prihvatilo je izrađeni doktorski rad dana <u>10. li puja 2013.</u> Obrana doktorskog rada održat će se dana <u>3. Sr puja 2013.</u>

Predsjednik Povjerenstva:

7. Krolo Dr. sc. Petar Krolo, red. prof.

Sveučilište u Splitu Kemijsko-tehnološki fakultet u Splitu

Potvrđuje se Povjerenstvo za obranu doktorskog rada u sastavu:

Dr. sc. Petar Krolo, red. prof. Dr. sc. Juraj Šipušić, izv. prof. Dr. sc. Pero Dabić, izv. prof.

Kemijsko-tehnološkog fakulteta u Splitu Fakulteta kemijskog inženjerstva i tehnologije u Zagrebu Kemijsko-tehnološkog fakulteta u Splitu

Ujedno se potvrđuje da je doktorski rad obranjen dana <u>3. SI Juja</u> 2013,

Dekan:

Dr. sc. Nenad Kuzmanić, red. prof.

SAŽETAK

U radu je istraživan utjecaj mulja iz pogona pocinčavanja "ADRIA CINK", smjese mulja i zeolita zasićenog cinkom, prirodnog zeolita iz nalazišta Donje Jesenje, olovo (II) oksida, olovo (II) kromata i amonijeva bikromata na ranu hidrataciju te fizikalno-mehanička svojstva industrijskog cementa tipa CEM I 42,5 R (proizvod cementare CEMEX Hrvatska).

Određivanje početka i kraja vezanja provedeno je na uzorcima portland cementa uz različite dodatke mulja, zasićenog i prirodnog zeolita, smjese mulja i zasićenog zeolita, olovo(II) oksida, olovo(II) oksida (uz 20 mas. % zeolita u uzorku), olovo(II) kromata, olovo(II) kromata (uz 20 mas. % zeolita u uzorku), amonijeva bikromata i amonijeva bikromata (uz 20 mas. % zeolita u uzorku). Mjerenja su provedena Vicat-ovim aparatom i elektrokemijskom metodom pri temperaturi od 20 °C i vodocementnom, V/C i voda/kruto omjeru, V/K, 0,5. Određivanje vremena vezanja nije vršeno pri normalnoj konzistenciji zbog mogućnosti usporedbe rezultata s konduktometrijskim i mikrokalorimetrijskim mjerenjima.

Utjecaj različitih dodataka (udjeli kao i kod određivanja vremena vezanja) na razvoj toplina (tijekom prvih 48 sati hidratacije) praćen je uporabom diferencijalne mikrokalorimetrije pri izotermnim uvjetima (T = $20 \,^{\circ}$ C) i vodocementnom (V/C) i voda/kruto omjeru (V/K) 0,5. Iz dobivenih termonaponskih veličina su pomoću programa "Hidratacija cementa" izračunate vrijednosti razvijenih toplina, brzina oslobađanja toplina i stupnjeva hidratacije.

Praćenje rane hidratacije vršeno je određivanjem specifične provodnosti cementnih uzoraka uz različite dodatke mulja, smjese mulja i zas. zeolita, olovo(II) oksida, olovo(II) kromata i amonijeva bikromata. Mjerenja su provedena pomoću digitalnog konduktometra ISKRA MA 5924 i elektrode od nehrđajućeg čelika.

Iz dobivenih vrijednosti vremena vezanja, oslobođene topline i specifične provodnosti određeni su matematički modeli prema kojima je moguće procijeniti vrijednosti vremena vezanja, maksimalno oslobođene topline i vrijeme pojave maksimalne provodnosti za bilo koji udjel ispitivanih dodataka mulja, smjese mulja i zas. zeolita, olovo(II) oksida, olovo(II) kromata i amonijeva bikromata.

Izluživanje teških metala cinka, olova i kroma iz cementnih uzoraka uz različite dodatke provedeno je prema modificiranom dinamičkom testu NEN 7345. Uzorci za izluživanje su hidratizirani 28 dana pri izotermnim uvjetima (u termostatu pri 20 °C). Otopina za izluživanje je nakon 18, 72 i 168 sati zamijenjena svježom otopinom. Koncentracija iona cinka, olova i kroma u otopinama nakon izluživanja određena je EDXRF (engl. Energy

Dispersive X-ray Fluorescence) uređajem za kvantitativnu analizu. Dobivene vrijednosti koncentracija su upotrebljene u difuzijskom modelu izluživanja za procjenu uspješnosti S/S procesa preko određivanja koeficijenata difuzije i srednjih vrijednosti indeksa izluživanja. Također su određeni mehanizmi po kojima dolazi do izluživanja metala iz stabiliziranih materijala.

Analiza hidratacijskih produkata cementnih uzoraka uz različite dodatke hidratiziranih 28 dana pri izotermnim uvjetima (T = 20 $^{\circ}$ C) vršena je upotrebom toplinske analize (TG–DTG) i infracrvene spektroskopije (FTIR). Toplinskom analizom određena je količina nastalog kalcijeva hidroksida i kemijski vezane vode.

U mortovima, gdje je dio cementa zamijenjen s 2, 5 i 10 mas. % mulja te 10, 20 i 30 mas. % zasićenog zeolita (uz 20 mas. % mulja u smjesi), određivan je utjecaj dodataka na tlačnu i savojnu čvrstoću u određenim periodima nakon 1, 2, 7 i 28 dana hidratacije i njegovanja u vodovodnoj vodi pri konstantnoj temperaturi od 20 ± 1 °C.

Iz rezultata izluživanja (vrijednost srednjeg indeksa izluživanja metala) i tlačnih čvrstoća moguće je ocijeniti korišteni S/S proces i procijeniti maksimalno dopuštene količine dodataka u cementnom matriksu.

Ključne riječi: Stabilizacija/solidifikacija, portland cement, diferencijalna mikrokalorimetrija, konduktometrija, EDXRF, TG – DTG, FTIR, cink, mulj iz pogona pocinčavanja, olovo, krom, NEN 7345

ABSTRACT

In this paper it was investigated the influence of mud from the zinc plating plant "ADRIA CINK", a mixture of mud and zeolite saturated with zinc, natural zeolite from the site Donje Jesenje, lead(II) oxide, lead(II) chromate and ammonium bichromate on early hydration and physico-mechanical properties industrial cement type CEM I 42,5 R (product of CEMEX Croatia cement plant).

Determination of the start and the end of setting time was performed on samples of Portland cement with different additions of mud, zeolite saturated with zinc, natural zeolite, mixture of mud and saturated zeolite, lead(II) oxide, lead(II) oxide (with 20 wt.% of zeolite in the sample), lead(II) chromate, lead(II) chromate (with 20 wt.% of zeolite in the sample), ammonium bichromate and ammonium bichromate (with 20 wt.% of zeolite in the sample). Measurements were performed by Vicat's apparatus and electrochemical method at a temperature of 20 °C and water/cement (V/C) and water/solid ratio (V/K) of 0,5. Determination of setting time was not done at normal consistency because of comparison with the conductometric and microcalorimetric results.

Effect of different additions (content as well as in determining the setting time) on the development of heat (during the first 48 hours of hydration) was determined using differential microcalorimetry in isothermal conditions (T = 20 °C) and water/cement (V/C), and water/solid ratio (V/K) of 0,5. The obtained thermovoltage results are used in computer program "Hidratacija cementa" for calculation of developed heat, the heat release rate and degree of hydration.

Monitoring the early hydration was performed by determining the conductivity of cement samples with different additions of mud, a mixture of mud and saturated zeolite, lead(II) oxide, lead(II) chromate and ammonium bichromate. The measurements were made using a digital conductivity meter ISKRA MA 5924 and electrode made of stainless steel.

The matematical models were determined from the obtained values of setting time, heat release and conductivity which can be use for estimation of the value of setting time, maximum heat release and the time of maximum conductivity for any examined addition of mud, a mixture of mud and saturated zeolite, lead(II) oxide, lead(II) chromate and ammonium bichromate.

Leaching of heavy metals (zinc, lead and chromium) from cement samples with different additions was carried out according to the modified dynamic leaching test NEN 7345. Samples were hydrated for 28 days at isothermal conditions (in the thermostat at 20

°C). After 18, 72 and 168 hours leaching solution was replaced with fresh solution. Ion concentration of zinc, lead and chromium in solution after leaching was determined by EDXRF (Energy Dispersive X-ray Fluorescence) device for quantitative analysis. The concentrations were used in the diffusion leaching models for evaluation of S/S process by determining the diffusion coefficients and the leaching indices. Also, leaching mechanisms of metals from stabized materials were determined.

Analysis of hydration products of cement samples with different additions of hydrated 28 days at isothermal conditions (T = 20 °C) was performed using a thermal analysis (TG-DTG) and infrared spectroscopy (FTIR). Quantity of calcium hydroxide and chemically bound water was determined by thermal analysis.

In mortars, where part of the cement was replaced with 2, 5 and 10 wt. % of mud and 10, 20 and 30 wt. % of saturated zeolite (with 20 wt.% of mud in the mixture), the impact of supplements on the compressive and flexural strength was determined on samples after 1, 2, 7 and 28 days of hydration and nourishing in tap water at a constant temperature of 20 ± 1 °C.

S/S process can be evaluated from the leaching (average leaching index of metals) and compressive strength results and estimated the maximum acceptable amount of additions in the cement matrix.

Keywords: stabilization/solidification, Portland cement, diferential microcalorimetry, conductometry, EDXRF, TG – DTG, FTIR, zinc, mud from zinc plating plant, lead, chromium, NEN 7345

OBJAŠNJENJE KRATICA I POJMOVA

U kemiji cementa radi jednostavnosti prikaza složenih mineralnih spojeva, bilo kao osnovnih sastojaka, bilo nastalih produkata iste je uobičajeno označavati dogovorenim kraticama. Isto tako i neki pojmovi se tako skraćeno označavaju. U ovom radu korištene su neke od tih skraćenica pa se radi lakšeg razumijevanja i snalaženja daje njihov popis:

С	CaO
S	SiO ₂
A	Al ₂ O ₃
F	Fe ₂ O ₃
Н	H ₂ O
M	MgO
<u>s</u>	SO ₃
К	K_2O
C ₃ S	3CaO·SiO ₂ (trikalcijev silikat)
C ₂ S	2CaO·SiO ₂ (dikalcijev silikat)
C ₃ A	3CaO·Al ₂ O ₃ (trikalcijev aluminat)
C ₄ AF	$4CaO \cdot Al_2O_3 \cdot Fe_2O_3$ (tetrakalcijev aluminat ferit)
С-S-Н	kalcijev silikat-hidratna faza
СН	Ca(OH) ₂ (kalcijev hidroksid)
$C_{3}A_{0,5}F_{0,5}(C\overline{S})_{3}H_{32}$	AF _t – faza ili aluminat-ferit-trisulfatna faza
$C_{3}A_{0,5} F_{0,5} C^{\overline{\$}} H_{12}$	AF _m – faza ili aluminat-ferit-monosulfatna faza
$C_6A\overline{\$}_{3}H_{32}$	Etringit
S/S	Stabilizacija/solidifikacija
CEM I	Portland cement bez dodataka
V/C	Omjer voda – cement
V/K	Omjer voda – kruto
L/S	Omjer tekuće/kruto
Q _(t)	Toplina oslobođena u vremenu t, J/g
Q _{max}	Toplina oslobođena pri potpunoj hidrataciji, J/g
TCLP	Toxicity Characteristic Leaching Procedure
USEPA	United States Environmental Protection Agency
ANC	Acid Neutralization Capacity

D _k	Stvarni koeficijent difuzije, cm ² /s
a _n	Izluženi dio tijekom vremenskog perioda n, mg
A ₀	Početna količina štetne tvari u uzorku, mg
$(\Delta t)_n$	Vrijeme izluživanja, s
V	Volumen uzorka za izluživanje, cm ³
S	Površina uzorka, cm ²
T _n	Proteklo vrijeme izluživanja na sredini perioda izluživanja n, s
LI	Indeks izluživanja
n	Period izluživanja
m	Broj perioda izluživanja
B _t	Maksimalno zbirno otpuštanje komponenti. mg/m ²
U _{max}	Maksimalno mogući iznos komponente za izluživanje, mg/kg
d	Gustoća produkta, kg/m ³
κ	Specifična provodnost, µS/cm
ABK	Amonijev bikromat
M	Oznaka mulja u uzorcima
C	Oznaka cementa u uzorcima
Z	Oznaka zeolita u uzorcima
ZZ	Oznaka zasićenog zeolita u uzorcima
Т	Temperatura, °C
EMS	Elektromotorna sila, mV
C	Konstanta konduktometrijske ćelije, cm ⁻¹
α	Relativni stupanj hidratacije
ΔT_{CH}	Temperaturni interval razlaganja kalcijeva hidroksida, ^o C
Δm_{50-105}^{o} C	Gubitak mase sušenjem, mg
Δm _{CH}	Promjena mase u području razlaganja kalcijeva hidroksida, mg
Δm _{CC}	Promjena mase u području razlaganja kalcijeva karbonata, mg
Δm_{50-850}^{o} C	Gubitak mase u temperaturnom području 50 – 850 °C, mg
СН	Maseni udio kalcijeva hidroksida
Kem. vez. H ₂ O	Maseni udio ostale kemijski vezane vode
Т	Transmitancija (propusnost)
y	Oznaka modela početka vezanja
Z	Oznaka modela kraja vezanja

ΔU	Promjena termonaponske veličine
k	Oznaka modela ukupno oslobođene topline
v	Oznaka modela vremena pojave maksimalne brzine hidratacije
p	Oznaka modela pojave maksimalne provodnosti
c	Oznaka modela tlačne čvrstoće

Metode:

DMK	Diferencijalna mikrokalorimetrija
TG	Termogravimetrija
DTG	Derivirana termogravimetrija
EDXRF	engl. Energy Dispersive X-ray Fluoroscence
FTIR	engl. Fourier Transform Infrared Spectroscopy

SADRŽAJ

1. UVOD	1
2. OPĆI DIO	2
2.1. Proces stabilizacije/solidifikacije, S/S	2
2.2. Primjena vezivnih materijala u S/S procesima	3
2.2.1. Portland cement	4
2.2.1.1. Hidratacija portland cementa	8
2.2.1.1.1. Hidratacija alita i belita	8
2.2.1.1.2. Hidratacija aluminatne faze	10
2.2.1.1.3. Hidratacija feritne faze	12
2.2.1.2. Stupanj hidratacije	13
2.2.1.3. Parametri koji utječu na hidrataciju	14
2.2.1.4. Kinetika hidratacije portland cementa	14
2.2.1.5. Hidratacija portland cementa uz dodatak teških metala	16
2.2.2. Zamjenski dodatci	18
2.2.2.1. Imobilizacija otpada uz dodatak pucolana	19
2.2.2.2. Imobilizacija otpada uz dodatak zeolita	19
2.3. Čimbenici koji utječu na izluživanje stabiliziranog otpada	21
2.3.1. Fizički čimbenici izluživanja	21
2.3.2. Kemijski čimbenici koji utječu na izluživanje	23
2.3.3. Trajnost S/S kompozita	25
2.4. Laboratorijski testovi izluživanja	25
2.4.1. Klasifikacija testova izluživanja	26
2.4.1.1. Testovi ekstrakcije	27
2.4.1.1.1. Jednokratna ekstrakcija (engl. Single-batch extraction)	28
2.4.1.1.2. Paralelna ekstrakcija (engl. Parallel-batch extraction)	29
2.4.1.1.3. Slijedna ekstrakcija	30
2.4.1.1.4. "Build up" ekstrakcija	30
2.4.1.2. Dinamički testovi	30
2.4.1.2.1. "Flow - around" test	31
2.4.1.2.2. "Tank" test (test difuzije)	31
2.4.1.2.3. "Flow - through" test	32

2.4.1.2.4. "Soxhlet" test	32
2.4.1.2.5. Difuzijski model izluživanja	34
2.5. Metode i tehnike praćenja procesa hidratacije stabiliziranog otpada	35
2.5.1. Praćenje hidratacije stabiliziranog materijala određivanjem topline	
hidratacije	36
2.5.1.1. Mikrokalorimetrija	37
2.5.2. Konduktometrija	38
2.5.3. Termogravimetrijska metoda analize	39
2.5.4. EDXRF metoda	39
2.5.5. Infracrvena spektroskopija (engl. Fourier Transform Infrared	
Spectroscopy, FTIR)	41
3. METODIKA	42
3.1. Materijali	42
3.1.1. Portland cement	42
3.1.2. Prirodni zeolit zasićen cinkom	42
3.1.3. Mulj iz pogona pocinčavanja "ADRIA CINK"	43
3.1.4. Standardni pijesak	43
3.1.5. Korištene kemikalije	44
3.2. Priprema uzoraka i provedba eksperimenata	44
3.2.1. Priprema cementnih pasta za mikrokalorimetrijska i	
konduktometrijska mjerenja	44
3.2.2. Priprema uzoraka za kvantitativno određivanje sastava cementa	
EDXRF uređajem	45
3.2.3. Priprema smjesa soli kroma i olova za umjeravanje EDXRF uređaja	46
3.2.4. Priprema uzoraka za izluživanje	48
3.2.5. Priprema uzoraka za termogravimetrijsku analizu i infracrvenu	
spektroskopiju	49
3.2.6. Priprema cementnih mortova za određivanje čvrstoća	49
3.3. Instrumentacija i metode karakterizacije	50
3.3.1. Određivanje vremena vezanja cementa icementnih kompozita	
standardnom metodom po Vicatu	50
3.3.2. Određivanje vremena vezanja cementa i cementnih kompozita	
pomoću Pb – Cu elektrodnog para	51

3.3.3. Diferencijalna mikrokalorimetrija	52
3.3.4. Konduktometrija	54
3.3.4.1. Određivanje konstante ćelije konduktometra, C	55
3.3.5. EDXRF uređaj za kvantitativnu analizu	56
3.3.5.1. Razvoj novih EDXRF metoda za određivanje koncentracije	
cinka, olova i kroma u otopinama nakon izluživanja	57
3.3.6. Termogravimetrija	58
3.3.7. FTIR	59
3.3.8. Određivanje tlačne i savojne čvrstoće	60
4. REZULTATI	61
4.1. Rezultati određivanja vremena vezanja cementa i cementnih	
kompozita metodom po Vicatu	61
4.2. Rezultati određivanja vremena vezanja cementa i cementnih	
kompozita elektrokemijskom metodom	65
4.3. Rezultati diferencijalne mikrokalorimetrije	70
4.4. Rezultati određivanja specifične provodnosti	138
4.5. Rezultati određivanja koncentracije iona cinka, olova i kroma u	
otopinama nakon izluživanja	141
4.6. Rezultati određivanja pH vrijednosti i specifične provodnosti u	
otopinama nakon izluživanja	145
4.7. Rezultati određivanja mehanizama izluživanja primjenom	
difuzijskog modela	153
4.7.1. Rezultati određivanja mehanizama izluživanja iona cinka	
primjenom difuzijskog modela	154
4.7.2. Rezultati određivanja mehanizama izluživanja iona olova preko	
difuzijskog modela	158
4.7.3. Rezultati određivanja mehanizama izluživanja iona kroma preko	
difuzijskog modela	161
4.7.4. Rezultati određivanja mehanizama izluživanja smjese olova i kroma	
preko difuzijskog modela	163
4.8. Rezultati toplinske analize	167
4.9. Rezultati infracrvene spektroskopije	172
4. 10. Rezultati ispitivanja tlačne i savojne čvrstoće cementnih kompozita	178

5. RASPRAVA	179
5.1. Utjecaj dodataka na vrijeme vezanja portland cementa	179
5.1.1. Razvoj matematičkih modela za procjenu početka i kraja vezanja	
(Vicat) cementnih uzoraka uz različite dodatke	183
5.2. Utjecaj dodataka na toplinu hidratacije portland cementa	185
5.2.1. Razvoj matematičkih modela za procjenu ukupno oslobođene	
topline i pojavu maksimalne brzine hidratacije uzoraka uz različite	
dodatke	200
5.3. Utjecaj dodataka na specifičnu provodnost cementnih pasti	204
5.3.1. Razvoj matematičkih modela za procjenu pojave maksimalne	
provodnosti uz različite dodatke	205
5.4. Utjecaj dodataka na sadržaj iona u otopinama nakon izluživanja	209
5.4.1. Određivanje koncentracije iona cinka, pH i specifične provodnosti u	
otopinama nakon izluživanja uzoraka uz dodatak mulja i smjese	
mulja i zeolita	209
5.4.2. Određivanje koncentracije iona olova, pH i specifične vodljivosti u	
otopinama nakon izluživanja uzoraka s dodatkom olovo(II) oksida	210
5.4.3. Određivanje koncentracije iona olova i kroma, pH i specifične	
vodljivosti u otopinama nakon izluživanja uzoraka s dodatkom	
olovo(II) kromata	211
5.4.4. Određivanje koncentracije iona kroma, pH i specifične vodljivosti u	
otopinama nakon izluživanja uzoraka s dodatkom amonijeva	
bikromata	212
5.4.5. Difuzijski modeli i mehanizmi izluživanja	212
5.5. Toplinska analiza hidratiziranih cementnih pasta	215
5.6. Infracrvena spektroskopija	216
5.7. Tlačna i savojna čvrstoća cementnih kompozita	218
5.7.1. Razvoj matematičkih modela za procjenu tlačnih čvrstoća uzoraka	
uz različite dodatke mulja i smjese mulja i zasićenog zeolita	219
5.8. Ocjena mogućnosti S/S zbrinjavanja (moguća uporabna vrijednost)	220
6. ZAKLJUČCI	223
7. LITERATURA	228

1. UVOD

Velike količine otpadnih materijala i nusprodukata nastaju, kako u proizvodnim procesima, tako i u uslužnim djelatnostima te djelatnostima koje se bave komunalnim čvrstim otpadom. Kao rezultat toga, upravljanje, odnosno zbrinjavanje otpada (engl. Waste Management) postalo je jedno od glavnih ciljeva ekologije u svijetu. Zbog povećanja svijesti o okolišu, nedostatnim kapacitetima odlagališta i sve viših cijena, upravljanje otpadom postalo je vrlo atraktivna alternativa. Visoka potrošnja i uporaba prirodnih izvora, velike količine industrijskih otpada i zagađenja okoliša zahtijevaju uvođenje novih tehnoloških rješenja za održivi razvoj.

Tijekom posljednjih godina tehnološka znanost stavlja naglasak na korištenje otpadnih materijala i nusproizvoda u vezivnim građevinskim materijalima. Dodatak takvih otpada u vezivne građevinske materijale ne smanjuje samo troškove proizvodnje cementa i betona, već utječe i na smanjenje troškova deponija, smanjuje troškove uporabe energije i čuva okoliš od štetnih učinaka (smanjenje CO₂). Nadalje, korištenje takvih otpada u cementnim kompozitima može poboljšati mikrostrukturu, mehanička svojstva i trajnost takvih vezivnih kompozita (morta i betona), koji se teško mogu ostvariti uporabom samog portland cementa kao veziva.

Kako je interes većine istraživača u svijetu usmjeren prema istraživanjima procesa stabilizacije i solidifikacije (S/S procesi) uz različite vrste otpada, kao što su: granulirana troska, otpadni zeoliti, industrijski muljevi iz završne obrade metala, leteći pepeo i drugo, u cilju određivanja svojstava nastalih cementnih kompozita i mogućnosti njihove primjene kao novih građevinskih materijala, tako vrlo značajnim postaje i praćenje kinetike tih procesa te mehanizama po kojima se ti procesi odvijaju tijekom hidratacije, kako bi se moglo istim kontrolirano upravljati.

Osnovni ciljevi istraživanja ove disertacije su: ispitivanje utjecaja otpadnih materijala (teških metala) na procese hidratacije i svojstva nastalih cementnih kompozita (otpornost, trajnost), te procjena prihvatljivog udjela štetnih otpada u matriksu novonastalog cementnog kompozita, što sve mora zadovoljiti zakonske propise ekološke prihvatljivosti izluživanja (eng. leaching) u okoliš.

2. OPĆI DIO

2.1. Proces stabilizacije/solidifikacije, S/S

Stabilizacija/solidifikacija je proces koji obuhvaća miješanje otpadnog materijala sa vezivnom tvari s ciljem smanjenja ispuštanja u ekosustav u fizičkom i kemijskom smislu, te pretvaranje opasnog otpada u, po okoliš manje štetan oblik za njegovo sigurno odlaganje ili uporabu u graditeljstvu.¹ S/S procesi se u većini slučajeva koriste za odlaganje niskoradioaktivnog, opasnog, te miješanog otpada, kao i sanaciju zagađenih lokacija. Ovi procesi uključuju miješanje cementa ili drugog vezivnog materijala s otpadom i na taj način procesom hidratacije vežu štetne komponente u strukturu novonastalog kompozita. Vezivni materijal kemijski reagira s otpadnim tvarima, izazivajući fizikalne i kemijske promjene reakcijskog sustava uz stabilizaciju tih štetnih sastojaka i spriječavanje njihovog daljnjeg transporta u ekosustav.^{2,3}

Proces stabilizacije smanjuje potencijal onečišćenja otpadom tako što smanjuje njegovu topljivost i pokretljivost kao štetne komponente. Ovo se postiže kemijskim i/ili fizikalnim procesima, a ove promjene su rezultat visokog pH koji je uvjetovan prisutnošću vezivnih tvari, kao što su cementi i/ili vapno, a što uzrokuje taloženje mnogih štetnih tvari.^{1,4,5} Na primjer, mnogi sulfidi, hidroksidi i fosfati se koriste u vezivima da bi preveli vrlo topljive soli i okside metala iz štetnog otpada u slabo topljive oblike. No, priroda i karakteristike otpada ne mijenjaju se svaki put procesima stabilizacije.^{6,7}

Procesima solidifikacije otpad se kompaktira u monolitnu čvrstu tvar visokog strukturnog integriteta. Solidifikacija često ne uključuje kemijsku interakciju između otpada i vezivne tvari, već se otpadna tvar mehanički veže za vezivo. Migracija štetne tvari se ograničava smanjenjem površine koja je izložena vanjskim utjecajima. Samim tim se postiže smanjenje permeabilnosti što dovodi do smanjenja prodora vode do štetnih tvari. Glavni cilj solidifikacije je pretvaranje otpada u oblik koji je povoljniji za rukovanje i odlaganje, uz istovremeno smanjenje štetnog potencijala otpada. Osim toga, tako zbrinuti otpad smanjuje rizik od rasipanja čestica otpada tijekom transporta i odlaganja, a samim tim smanjuje opasnost za živi svijet i prirodu.^{1,6,8}

S/S tehnologija je prvi put primjenjena za zbrinjavanje radioaktivnog otpada u 1950-tim godinama. U ranoj fazi, tekući radioaktivni otpad se solidificirao pomoću portland cementa u kantama i drugim posudama, a zatim se zakopavao na odlagalištima pod državnom kontrolom ili u moru. Bile su potrebne velike količine cementa da bi se solidificirala voda u tim tekućim otpadima. Mineralni adsorbensi kao što je vermikulit $(Mg,Fe,Al)_3(Al,Si)_4 O_{10}(OH)_2 \cdot 4(H_2O)$ su se koristili s cementom kako bi se apsorbirao visoki sadržaj vode i smanjila potrebna količina cementa. Malo dokumenata o S/S procesima se može naći prije 1970. godine.

Tijekom 1970-ih godina nekoliko poduzeća je ispitivalo S/S procese industrijskog tekućeg otpada. "Chemfix Inc." je otkrio i patentirao metodu kod koje se za zbrinjavanje drenažnih muljeva iz rudnika koristi otopina natrijeva silikata i portland cementa. U istom razdoblju, "Conversion System Inc." je razvio postupak sa vapnom i letećim pepelom za obradu mulja iz postrojenja odsumporavanja dimnih plinova. "Dravo Corporation" je koristio trosku visokih peći za skrućivanje mulja velikog volumena iz termoelektrana.

USEPA (Američka agencija za zaštitu okoliša) je financirala nekoliko projekata za vrednovanje S/S procesa za zbrinjavanje otpada. Poslije toga, S/S procesi počinju privlačiti pozornost vladinih agencija i inženjerskih firmi. USEPA je počela financirati istraživanje i razvoj S/S tehnologije ne samo u svojim laboratorijima već i na sveučilištima i tvornicama. Razvijena su mnoga organska i anorganska veziva, kao što su: portland cement, portland cement na bazi pucolana, polimerom izmjenjen cement, cement na bazi vapna i pucolana, aluminatni cement, bitumen, epoksidi, polietilen i dr.

Anorganska veziva, kao što su cementi, su učinkovita u vezivanju teških metala kroz kemijske i fizikalne mehanizme, ali nisu učinkovita u vezivanju većine organskih zagađivala. Mnoge tvari iz otpada značajno utječu na karakteristike stvrdnjavanja veziva, posebno kod sustava na bazi cementa.¹

2.2. Primjena vezivnih materijala u S/S procesima

Kod S/S procesa kao mineralno vezivno sredstvo se najčešće koriste portland cement i vapno. Oni mogu biti pomiješani s nekim sekundarnim vezivnim tvarima kako bi im se promijenila fizikalna i kemijska svojstva kao i karakteristike tako nastalog kompozita. Na ovaj način se može dobiti potpuno učinkovit sustav ovisno o karakteristikama veziva i otpadnog materijala.^{9,10}

Od svih veziva, materijali na bazi cementa se najviše koriste kod S/S procesa.^{7,11} Ovakvi materijali imaju cijeli niz prednosti u odnosu na druge vezivne tvari, jer imaju: relativno nisku cijenu, dobru fizikalnu i kemijsku stabilnost tijekom dužeg razdoblja, dobre tlačne čvrstoće, kompatibilnost sa velikim brojem otpadnih materijala, dobro poznatu i razvijenu tehnologiju, netoksičnost kemijskih sastojaka, dobra mehanička svojstva, nema pojave otpadnih plinova, otpad se kemijski veže u matriks, otpornost na UV zračenje i biodegradaciju itd.

S/S procesi na bazi cementa iznimno su kompleksni, a uključuju procese otapanja, površinske pojave i reakcije u čvrstoj fazi.^{12,13}

2.2.1. Portland cement

Najčešće korišteno anorgansko vezivno sredstvo je svakako portland cement. Postupak dobivanja portland cementa otkriven je u 19. stoljeću. Veliki utjecaj na razvoj imali su graditeljski ostaci iz antičkih vremena. 1824. godine Joseph Aspdin je, nakon niza pokušaja, uspio proizvesti umjetni kamen koji je nazvao portland cement (ime je dobio po sličnosti izgleda s prirodnim kamenom iz Portlanda, Engleska). Prvi pravi portland cement pripisuje se da ga je proizveo I. C. Johnson 1844. godine pečenjem pri temperaturi sinteriranja.¹⁴

Proizvodnja portland cementa se brzo širila svijetom, pa je i njegova kvaliteta bila vrlo različita.

Kao sirovine za portland cement mogu se koristiti prirodni materijali, ali i industrijski proizvodi. Polaznu smjesu za proizvodnju portland cementnog klinkera čini smjesa vapnenca i glinene komponente koje se dodaju u omjeru :

vapnenac : glinena komponenta = 3:1.

Ta smjesa se zatim termički obrađuje pri temperaturi sinteriranja (1350 – 1450 $^{\circ}$ C). Na ovaj način proizveden je cementni klinker, koji se zatim hladi i oslobađa od slobodnog vapna. Nakon toga, cementni klinker se melje uz dodatak 2 - 4 mas. % prirodnog gipsa, CaSO₄·2H₂O (**slika 1**).

Prirodni gips služi kao regulator vremena vezivanja i kao takav utječe na obradljivost i ugradljivost svježe pripremljenih cementnih kompozita.

Slika 1. Shema proizvodnje portland cementa¹⁵

Kemijska analiza¹⁶ cementnog klinkera pokazuje da su glavne kemijske komponente: CaO, SiO₂, Al₂O₃ i Fe₂O₃. Radi lakšeg objašnjenja sastava, imena komponenti se prikazuju skraćenicama, kako je prikazano u **tablici 1**. Uz glavne komponente postoje i sporedne ili minor komponente kao što su: MgO, K₂O, SO₃, P₂O₅, FeO itd. Osnovne komponente međusobno reagiraju pri zadanim uvjetima i stvaraju tzv. cementni klinker. Ove reakcije stvaranja cementnog klinkera se odvijaju u krutom stanju. Za provedbu ovih reakcija vrlo su važni površinski dodiri reaktanata. Reakcije u čvrstom stanju se odigravaju odmah nakon dehidroksilacije glina i termičkih disocijacija karbonata. Nakon ovih reakcija slijede procesi sinteriranja i djelomičnog taljenja klinkera.

Formula	Oznaka	Formula	Oznaka
CaO	С	SiO ₂	S
Al ₂ O ₃	А	Fe ₂ O ₃	F
MgO	М	K ₂ O	K
SO ₃	S	H ₂ O	Н

Tablica 1. Oznake komponenti u kemiji cementa

Spoj	Naziv faze	Skraćeni prikaz	Prosječni sastav (mas. %)
Trikalcijev silikat	alit	C_3S	50 - 70 %
Dikalcijev silikat	belit	C_2S	15 – 30 %
Trikalcijev aluminat	aluminat	C ₃ A	5 – 10 %
Tetrakalcijev alumo ferit	ferit	C ₄ AF	5-15 %

Tablica 2. Prosječni mineraloški sastav portland cementa

Slika 2. Osnovni minerali cementnog klinkera¹⁹

Alit (Ca_3SiO_5 ili C_3S^{10}) je glavni mineral običnog portland cementnog klinkera o kojem najviše ovisi čvrstoća cementa. Alit je odgovoran za čvrstoće cementa na 7 i 28 dana. Kod alita postoji triklinska ili monoklinska forma, a što uvjetuje ugrađena količina Al ili Mg. Ugradnja Al i Mg stabilizira monoklinske polimorfe što je vrlo važno u industriji. Alkalije otežavaju stvaranje alita uz velike promjene strukture. "Onečišćenja" u strukturi C₃S–a daju defekte u kristalnoj rešetki što utječe na hidrauličnu aktivnost alita.

Belit (Ca₂SiO₄ ili C₂S) je β -modifikacija C₂S–a koja nastaje pri pečenju klinkera pri temperaturama iznad 1420 °C. Poznato je pet polimorfnih oblika belita.

Polimorfne modifikacije moguće je stabilizirati dodatkom "minor" elemenata. Neki od minor elemenata, kao što su Mg, Al i K, nalaze se u sirovinskoj osnovi za proizvodnju

portland cementnog klinkera. Belit, za razliku od alita, stvrdnjava se znatno sporije, ali konačne čvrstoće su jednake čvrstoćama alita.

Aluminatna faza (Ca₃Al₂O₆ ili C₃A) nema polimorfne modifikacije. One nastaju ugradnjom "minor" elemenata. Aluminatna faza reagira burno s vodom, ali nema izražena hidraulična svojstva. U prvom danu, C₃A daje početnu čvrstoću cementnom vezivu. Burna reakcija s vodom usporava se dodatkom gipsa. Aluminatna faza sa sulfatima daje entringit, C₆A $\overline{\$}_3$ H₃₂. Zbog velikog skupljanja pri hidrataciji sadržaj aluminatne faze u cementu je ograničen na iznos manji od 10 mas. %.

Alumo feritna faza (Ca₂AlFeO₅ ili C₄AF) je čvrsta otopina koja kristalizira rompski. Alumo feritna faza neznatno utječe na čvrstoću cementnog veziva i kristalizira kao posljednji klinker mineral prizmatičnog oblika. Ova faza tali se pri 1410 $^{\circ}$ C i reagira s vodom, ali ne tako burno kao C₃A faza.

O udjelima pojedinih minerala klinkera ovise fizikalno-kemijska i vezivna svojstva nastalog cementa.

Procesi stvaranja cementnog klinkera počinju kad se postigne temperatura već iznad 700 °C. Posljedica toga je postojanje mineralizatora i topitelja u sirovini.

Prema tome procesi sinteze odvijaju se:

- već ispod 800 °C stvara se CaO·Al₂O₃ ili CA,
- između 800 i 900 °C započinje stvaranje CaO·SiO₂ ili CS, koji se kod 1000 °C transformira u spojeve s većim sadržajem CaO,
- između 900 i 950 °C nastaje 5CaO·3Al₂O₃ ili C₅A₃ odnosno C₁₂A₇ koji se može naći i u gotovom proizvodu,
- između 950 i 1200 °C nastaje 2CaO·SiO₂ ili C₂S koji također ostaje u gotovom proizvodu,
- između 1200 i 1300 °C stvara se 3CaO·Al₂O₃ ili C₃A koji prelazi u aluminat feritnu fazu 4CaO·Al₂O₃·Fe₂O₃ ili C₄AF,
- kod 1260 °C dolazi do pojave prve taline i
- iznad 1260 pa do 1450 °C stvara se 3CaO·SiO₂ ili C₃S kao glavni i osnovni klinker mineral.

Važno je reći da u uvjetima industrijskog dobivanja i sinteze klinkera nastali minerali nisu čisti spojevi već su onečišćeni ugradnjom stranih iona.²⁰

2.2.1.1. Hidratacija portland cementa

Da bi se što bolje razumjela fizikalna svojstva cementa te utjecaj pojedinih dodataka na njegovu hidrataciju i svojstva hidratiziranog cementnog kompozita, potrebno je upoznati sam fenomen hidratacije portland cementa i karakteristike produkta koji nastaje njegovom hidratacijom.^{14,17} Zbog kompleksnosti sastava portland cementa i proces njegove hidratacije je vrlo složen.

Hidratacija je proces koji se javlja kada se cement pomiješa s vodom. Kod hidratacije odvija se cijeli niz kemijskih reakcija između cementa i vode, odnosno cementnog klinkera i sulfata (gipsa) s vodom. Te se reakcije međusobno preklapaju i odvijaju različitim brzinama. Ovakav reakcijski sustav cement-voda, s vremenom prelazi iz plastične, lakoobradljive cementne paste u čvrstu, kamenu sličnu tvar. Taj nagli porast viskoznosti naziva se početak vezivanja. Kraj vezivanja očituje se u stabilizaciji oblika cementne paste. To je posljedica stvaranja međusobno isprepletenih produkata hidratacije preko kojih se stvara konačno stanje, cementni kamen.

2.2.1.1.1. Hidratacija alita i belita

Hidratacija silikatnih konstituenata cementnog klinkera alita i belita, koji u silikatnom cementu obično čine i do 70 - 80 mas. % hidraulične komponente može se pojednostavljeno prikazati jednadžbama **1** i **2** i shematski na **slici 3**.

$$2 C_{3}S + (6-8) H \rightarrow C - S - H + 3 CH$$
(1)
(alit) (portlandit)
$$2 C_{2}S + (4-6) H \rightarrow C - S - H + CH$$
(2)
(belit) (portlandit)

Slika 3. Shematski prikaz hidratacije C₃S-a

Nastale C-S-H faze po svom sastavu nisu točno definirani kemijski spojevi,^{21,22} jer imaju promjenjiv sastav i stupanj kristaliničnosti (međusobni odnos komponenata C/S i H/S nije stalan) pa se obično i prikazuju samo kao C-S-H faze.²³ Kalcijev hidroksid (CH ili portlandit) je produkt reakcije hidratacije C₃S odnosno C₂S i njegov sastav je točno definiran.

Ako se u početku procesa hidratacije, reakcijom C_3S i vode, oko zrnaca koja hidratiziraju, stvara želatinozna ovojnica C-S-H gela, (koja djeluje kao polupropusna membrana kroz koju difundiraju kalcijevi ioni, a zaostaju silikatni ioni), u tom slučaju tek kada taj sloj pukne, završen je period indukcije. Razvoj produkta hidratacije na zrnu C_3S u obliku vanjskog (A) i unutrašnjeg (B) produkta, shematski je prikazan na **slici 4**.

Slika 4. Shematski prikaz hidratacije zrnca C_3S i stvaranje produkta C-S- H^{18}

Hidratacija belita je analogna hidrataciji alita, samo je sporija 20 puta. Nastali C-S-H gel veoma je sličan onome koji se stvara hidratacijom C_3S . Reakcijom se stvara manje $Ca(OH)_2$, jer je u sastavu C_2S manje CaO. Mehanizam reakcije hidratacije još nije točno određen.

2.2.1.1.2. Hidratacija aluminatne faze

Aluminatna faza s vodom veoma burno reagira prema jednadžbama **3** i **4**. Zbog visoke topline hidratacije, koja je karakteristična za hidrataciju ovog minerala, dolazi do povećanja temperature (80 - 100 °C) koja uzrokuje i spontani prijelaz heksagonskih kristala u kubične, jer su heksagonski kristali nestabilni (**slika 5**).

$$2 C_3 A + 21 H \rightarrow C_4 A H_{13} + C_2 A H_8$$
(3)

$$C_4AH_{13} + C_2AH_8 \rightarrow 2 C_3AH_6 + 9 H \tag{4}$$

Slika 5. Shematski prikaz hidratacije C₃A

Kako se pri proizvodnji portland cementa pri mljevenju cementnog klinkera dodaje gips (CaSO₄ · 2H₂O ili $C^{\overline{S}}H_2$), to se proces hidratacije C₃A uz vapno i gips modificira, i reakcijom nastaje etringit, što se može prikazati jednadžbom **5**.

$$C_{3}A + 26H + 3C\overline{\$}H_{2} \rightarrow C_{6}A\overline{\$}_{3}H_{32}$$
(5)
(etringit)

Nastali etringit je netopljiv u otopini gipsa pa se taloži na površini hidratiziranog zrna C₃A, stvarajući efektivnu prepreku brzoj hidrataciji (**slika 6**). Kada se sav raspoloživi sulfat utroši za reakciju s C₄AH₁₃, tada dolazi do reakcije etringita $C_6A\overline{\$}_3H_{32}$ s hidratom C₄AH₁₃, pri čemu nastaje kalcijev aluminat monosulfat hidrat (jednadžba **6**).

$$C_6 A \overline{\$}_3 H_{32} + 2C_4 A H_{13} \rightarrow 3C_4 A \overline{\$} H_{12} + 2CH + 20 H$$
(6)

Slika 6. Hidratacija C₃A u prisutnosti gipsa

Slika 7. *Kristalna struktura etringita*²⁴

Vezanje će se dogoditi tek onda kada u kontaktnoj otopini bude dovoljno iona za stvaranje etringita, kada se počinju formirati njegovi igličasti kristali i tada počinje vezanje C_3A , odnosno portland cementa. Struktura nastalog etringita prikazana je na **slici 7**.

2.2.1.1.3. Hidratacija feritne faze

Hidratacija feritne faze s vodom u prisutnosti vapna, slična je onoj C_3A , ali je znatno sporija, pri čemu nastaju supstituirane C_4AH_{13} faze, kao heksagonalni hidrati, koji sadrže željezo i aluminij. Reakcija hidratacije se odvija prema jednadžbi **7**.

$$C_2A_{0,5}F_{0,5} + 2 CH + 11 H \rightarrow C_4A_{0,5}F_{0,5}H_{13}$$
 (7)

U prisutnosti vapna i gipsa feritna faza hidratacijom daje trisulfatnu fazu s ugrađenim Fe(III) ionima u strukturi hidrata (jednadžba **8**).

$$C_{2}A_{0,5}F_{0,5} + CH + 3C\overline{S}H_{2} + 25H \rightarrow C_{3}A_{0,5}F_{0,5}(C\overline{S})_{3}H_{32}$$
 (8)
(AFt-faza)

Nastala trisulfatna hidratna faza, $C_3A_{0,5} F_{0,5} (C^{\overline{\$}})_3H_{32}$, naziva se AFt-faza. Ako je pak sav gips utrošen u drugim reakcijama, tada $C_4(AF)_{0,5}H_{13}$ reagira s AFt-fazom stvarajući monosulfatnu hidratnu ili AFm-fazu, prema jednadžbi **9**.

$$2C_{4}A_{0,5}F_{0,5}H_{13} + C_{3}A_{0,5}F_{0,5}(C^{\overline{\otimes}})_{3}H_{32} \rightarrow 3(C_{3}A_{0,5}F_{0,5}C^{\overline{\otimes}}H_{12}) + 2CH + 20H \quad (9)$$
(AFt-faza) (AFm-faza)

Faze AFt, AFm i C_4AH_{13} u kojima je došlo do supstitucije Fe(III) iona su slične po strukturi čistim aluminatnim fazama i s njima stvaraju krute ili čvrste otopine.²⁵

2.2.1.2. Stupanj hidratacije

Relativni stupanj hidratacije cementnog veziva $\alpha(t)$ obično se opisuje kao stanje procesa hidratacije u vremenu t. Parametri preko kojih se može odrediti relativni stupanj hidratacije su: iznos oslobođene topline hidratacije i iznos kemijski vezane vode u tom vremenu. Osnovni minerali klinkera hidratiziraju različitim brzinama, istovremeno vezujući različite iznose vode po jedinici mase, te oslobađaju različite iznose topline po jedinici mase, te oslobađaju različite iznose topline po jedinici mase (jednadžba **10**). Zbog mnogih praktičnih razloga, relativni stupanj hidratacije se izjednačava s omjerom oslobođene topline u vremenu t i oslobođene topline pri potpunoj hidrataciji po jedinici mase hidratiziranog veziva (**slika 8**).

$$\alpha = \frac{Q_{(t)}}{Q_{\max}} \tag{10}$$

gdje je

 $Q_{(t)}$ – iznos topline oslobođene u vremenu t, J/g,

 Q_{max} – iznos topline oslobođene pri potpunoj hidrataciji (α = 1), J/g.

Slika 8. Ovisnost omjera topline hidratacije (Δ) i kemijski vezane vode (o) o stupnju hidratacije (+)

Kod većine slučajeva, iznos oslobođene topline je dobar parametar za opisivanje stvarnog stanja procesa hidratacije.²⁶

2.2.1.3. Parametri koji utječu na hidrataciju

Proces hidratacije, u najvećoj mjeri, je određen slijedećim čimbenicima:

- kemijski i mineraloški sastav cementa,
- finoća i raspodjela veličine čestica cementa,
- vodocementni omjer, v/c,
- temperatura reakcija,
- dodatci i
- dostupnost vode iz okoline.

Naime, brzina hidratacije je veća što je finiji cement, viša temperatura i veći vodocementni omjer (**slika 9**).

Slika 9. Utjecaj finoće, temperature i v/c omjera na stupanj hidratacije

Najveći doseg hidratacije običnog betona najviše ovisi o finoći cementa i v/c omjeru. U praksi, stupanj hidratacije portland cementa obično ne prelazi 70 - 80 %.²⁶

2.2.1.4. Kinetika hidratacije portland cementa

Napredovanje procesa hidratacije utječe na kemijska, fizikalna i mehanička svojstva cementne paste. Praćenje napredovanja procesa hidratacije ostvaruje se registriranjem krivulje razvijanja topline što se shematski može vidjeti na slici **10**.

Slika 10. Shematski prikaz hidratacije portland cementa¹⁸

Faza I (predindukcijski period):

Odmah nakon reakcije cementa s vodom dolazi do izmjene iona između čvrste i tekuće faze. Nastajanjem prvih hidratacijskih produkata, toplina se brzo razvija i traje kratko vrijeme (nekoliko minuta). U ovom periodu hidratizira gips poluhidrat, koji nastaje iz dihidrata tijekom mljevenja klinkera. Daljnji prinos topline potječe od slobodnog vapna i vode, otapanja i hidrolize cementnih čestica, kao i reakcije aluminatne faze.

Faza II (indukcijski period):

Brzina razvijanja topline naglo opada i ostaje konstantna nekoliko sati. U indukcijskom periodu koncentracija Ca²⁺- iona doseže iznos zasićenja s obzirom na Ca(OH)₂.

Faza III (ubrzavajući period):

U ovom periodu dolazi do početka nukleacije i rasta nastalih C-S-H faza i $Ca(OH)_2$. Na česticama nastaju tanke ljuske C-S-H faze kao i nešto štapićastih AF_t produkata. U daljnjem tijeku hidratacije snižava se koncentracija Ca²⁺- iona u tekućoj fazi, te se razvija velika količina topline i dolazi do smanjenja poroznosti paste kontinuiranim taloženjem C-S-H i ostalih hidratacijskih produkata. Ali isto tako se počinju stvarati tanke pločice Ca(OH)₂, dok C-S-H faze počinju uspostavljati vezu između zrna i kontinuiranog kostura novonastalih produkata.

Faza IV i V (period usporavanja i difuzije):

U ovom periodu se odvija reakcija između najveće količine gipsa i C_3A te nastajanje etringita (AF_t produkt). No ako nema dovoljno sulfata, etringit se otapa i reagira s Al(OH)₄⁻ dajući monosulfo aluminat hidrat (AF_m produkt). Nakon toga slijedi period usporavanja hidratacije koji je opisan malom količinom razvijene topline. Ovaj proces je kontroliran difuzijom ionskih vrsta te odlaganjem produkata u sustavu čija je poroznost smanjena.

2.2.1.5. Hidratacija portland cementa uz dodatak teških metala

Reakcije portland cementa i otpadne tvari mogu biti vrlo složene. Posebno uz činjenicu da čak i najjednostavniji mehanizmi hidratacije portland cementa nisu još u cijelosti objašnjeni. Općenito, najveći dio kristalnog kalcijevog silikata iz cementa reagira sa vodom i stvara amorfni hidratizirani kalcijev silikat (C-S-H gel, tobermorit gel) i kristalni kalcijev hidroksid (portlandit). Tobermoritni gel je glavna vezujuća komponenta stabiliziranog otpada dok portlandit, Ca(OH)₂ stvara lužnatu sredinu (pH > 12). Kao posljedica visokog pH javlja se neutralizacija kiselih otopina s kojima stabilizirani otpad dolazi u kontakt i na taj način se spriječava izluživanje teških metala. Također, prisutni hidroksid pretvara ione teških metala iz otpada u njihove slabo topljive hidrokside. Osim toga, tijekom stabilizacije odvijaju se i reakcije stvaranja karbonata, silikata i dr. Portlandit je djelomično topljiv i tijekom dužeg vremenskog razdoblja pod utjecajem vlage difundira kroz pore i izlužuje se iz solidificiranog otpada. Zbog toga njegovo izluživanje može dovesti do degradacije strukture solidificiranog materijala.¹

Hidratacija cementa se može promjeniti pod utjecajem teških metala tijekom stvaranja omotača oko čestica cementa.²⁷ Poon i suradnici su zaključili da metali koji se nalaze u slabo topljivim hidroksidima usporavaju procese hidratacije, dok oni koji sačinjavaju vrlo topljive hidrokside ubrzavaju hidratacijske procese.^{28,29} Usporavanje se pripisuje smanjenju permeabilnosti zbog nastalih produkata, što dovodi do taloženja neotopljenih metalnih gelova na površini čestica cementa.⁸

Brzine reakcija cementnih faza ne ovise samo o sastavu i strukturi, već i o temperaturi, veličini, obliku čestica kao i o prisustvu dodataka ubrzivača i usporivača (gips, kalcijev klorid, kalcijev hidroksid, CO₂).^{30,31}

Složenost rezultata S/S procesa na bazi cementa rezultat je raznovrsnosti prirode korištenih otpadnih materijala te kinetike procesa na površini i uz površinu cementne faze.¹³ Ovi procesi obuhvaćaju sljedeća tri aspekta: fizikalnu adsorpciju čestica otpada na površini hidratacijskih produkata, kemijsko vezanje štetnih tvari (kemijska reakcija između hidratacijskih produkata i čestica otpada) i fizikalno ovijanje otpadnog materijala (mala permeabilnost stvrdnute paste). Prva dva aspekta ovise o prirodi nastalih hidratacijskih produkata, dok treći ovisi o prirodi produkata, gustoći, te strukturi nastalih cementnih pasti.^{8,32}

Fizikalna adsorpcija se događa kada metalni ioni iz otopine privlače čestice sa površine pod utjecajem suprotnog naboja. Kemijska adsorpcija se odnosi na kovalentno vezanje, pri čemu naboj na površini, kao i kemijske reakcije, u velikoj mjeri mijenjaju kapacitet hidratacijskih produkata prema teškim metalima.^{33,34} Pri taloženju produkata hidratacije portland cementa, ioni metala mogu biti adsorbirani na njihovoj površini i zatim ući u rešetku. Na taj način mijenjaju strukturu (veličina čestica) i topljivost produkata.³⁵

U lužnatoj okolini prisutnoj tijekom hidratacije cementa, površine cementnih čestica su negativno nabijene. Iako neutralne ili manje pozitivne površine mogu adsorbirati katione metala, ipak većinu kationa metala adsorbiraju negativno nabijene površine čestica. Najviše dostupni kationi u otopini su Ca²⁺, a vjeruje se da prevlače površinu silikata stvarajući visoko nabijeni Ca-sloj. Anioni metala u otopini će se natjecati za adsorpcijska mjesta stvarajući dodatni sloj.

Asavapisit i suradnici³⁶ su ispitivali ovo natjecanje za adsorpcijska mjesta proučavajući utjecaje sintetičkih dodataka hidroksida olova, cinka i kadmija na Ca²⁺ ione tijekom hidratacije običnog portland cementa. Zaključili su da se tijekom rane hidratacije alita, otapa velika količina olova i najvjerojatnije stvaraju Pb(OH)₃⁻ ioni. Pretpostavili su da ovi ioni spriječavaju stvaranje Ca(OH)₂ u prvom tjednu hidratacije alita. Također su otkrili da se, sa stvaranjem novih produkata silikata, smanjila koncentracija olova s 1000 mg/L na 20 mg/L ukazujući na činjenicu da su Pb(OH)₃⁻ ioni adsorbirani na novonastalu površinu silikata.

Znanstvenici su otkrili slično ponašanje i kod cinka, dok se kadmij ponaša suprotno, potičući brzo razvijanje Ca(OH)₂. Poon i suradnici su, preko poroznosti i eksperimenata izluživanja, pokazali da se Zn zadrži u cementnom matriksu.^{28,37} Promatrano izluživanje nije bilo u skladu s izmjerenom poroznosti matriksa, te su zaključili da je kemijska stabilizacija važnija od fizičkog zadržavanja metala u strukturi.

Hills, Tashiro, Hanna i suradnici su pokazali štetni utjecaj teških metala na hidrataciju cementa.³⁸⁻⁴³ Ova istraživanja su bila usmjerena prema ispitivanju kontrolnih mehanizama i efekata olova na cementni matriks. Nadalje, potvrđeno je stvaranje olovnog koloidnog omotača oko čestica cementa koji spriječava hidrataciju cementa.⁴⁴

Također, mnogi znanstvenici su ispitivali i utjecaj kroma (III) i (VI) na hidrataciju portland cementa.⁴⁵⁻⁵⁰ Lin i suradnici su zaključili da se krom lako ugrađuje u β -C₂S-u i portland cementnim pastama, ali negativno djeluje na karakeristike nastalih hidratacijskih produkata. Omotoso je ispitivao stabilizaciju kroma u C₃S-u i zaključio je da Cr(III) ubrzava hidrataciju C₃S-a, dok Cr(IV) nema nikakav utjecaj na hidrataciju.⁵¹ Wang i Vipulanandan su otkrili da dodatak Cr(VI) u obliku K₂CrO₄, odgađa početno i konačno vrijeme vezivanja i smanjuje tlačnu čvrstoću materijala.⁴⁸ Dok su Zamorani i suradnici otkrili da male količine Cr(III) u cementnom sustavu ubrzavaju vezivanje.⁵² Imobilizacija Cr(VI) pomoću hidrauličnih veziva se dešava preko jednog ili kombinacije sljedećih mehanizama: adicije (Cr-C-S-H), supstitucije (Cr-etringit, monokrom aluminat) ili taloženja novih spojeva (kalcijev kromat, Na-Cr-AFt).⁵³ Uspješnost imobilizacije teških metala u portland cementnom matriksu povezana je s mikrostrukturom hidratizirane cementne paste, posebno s raspodjelom pora i poroznošću.⁵⁴

2.2.2. Zamjenski dodatci

Zamjenski dodatci uključuju tvari koje samostalno nisu dobre za stabilizaciju otpada, ali u kombinaciji sa cementom se mogu vrlo uspješno primijeniti za S/S procese. Primjena tih dodataka leži prvenstveno u dva osnovna razloga.

Prvi razlog je postizanje određenih promjena u cementnom kompozitu tijekom plastičnog ili čvrstog stanja novog kompozita.

Drugi razlog je ekonomski, gdje se skupi cementni klinker zamjenjuje s jeftinijim materijalom. Taj dodatak se mora uklopiti u složene procese hidratacije. Na ovaj način se dobije nova vrsta cementa, koja se promatra zasebno od drugih vrsta cementa (cement s dodatcima).

Zamjenski dodaci su tvari koje se dodaju u sustav s cementom i čiji iznos premašuje 5 mas. % u odnosu na masu cementa. Moguće je izvršiti više različitih podjela ovih zamjenskih dodataka.

Jedna od podjela razlikuje više grupa takvih tvari s obzirom na tip kemijske reakcije i to:

- tvari koje posjeduju potencijalno hidraulično svojstvo za koje je potreban aktivator (troske visoke peći),
- tvari koje posjeduju djelomično hidraulično svojstvo kao i pucolansko svojstvo (leteći pepeli s visokim sadržajem CaO),
- tvari s visokom pucolanskom aktivnošću (filtarska SiO₂ prašina i pepeo rižinih ljuski),
- tvari koje predstavljaju normalne pucolane,
- tvari u koje se mogu ubrojiti zeoliti kao alumosilikati,
- različite mineralne tvari, primjerice sporo ohlađene troske, slabo reaktivni pepeli
 rižinih ljuski ili pepeli termoelektrana i dr.¹

2.2.2.1. Imobilizacija otpada uz dodatak pucolana

Pucolani su silikatni ili aluminatni materijali koji se nalaze u prirodi ili se dobivaju u industrijskim postupcima kao sporedni produkti. Vezivna svojstva dobivaju aktiviranjem uz dodatak kalcijevog hidroksida. Leteći pepeo nastao sagorijevanjem ugljena i drugi pucolani sadrže silikatnu fazu koja reagira sa kalcijevim hidroksidom iz cementa i formira se C-S-H gel. Sastav letećeg pepela ovisi o sastavu ugljena, a uglavnom se sastoji od SiO₂, Al₂O₃, Fe₂O₃ i CaO. Kao i portland cement i leteći pepeo reagira s vodom uz stvaranje se C-S-H gela. No u ovom slučaju gel se stvara uz istovremeno trošenje kalcijevog hidroksida koji je nastao prethodnom hidratacijom portland cementa. Uklanjanje dijela Ca(OH)₂ je korisno jer se na taj način smanjuje otapanje stabiliziranog otpada. Isto tako smanjuju se nepoželjne reakcije kalcijevog hidroksida sa solima.⁵⁵⁻⁶⁰

2.2.2.2. Imobilizacija otpada uz dodatak zeolita

Korištenje zeolita u stabilizaciji otpada puno obećava, zbog svoje niske cijene i mogućnosti primijene kao alternativne tehnologije u odnosu na skupo kemijsko i fizičko ukljanjanje onečišćenja. Zeoliti su kristalni hidratizirani alumosilikati alkalijskih i zemnoalkalijskih elemenata. Prirodni zeoliti su dostupni u prirodi te se mogu koristiti kao "sirovi" materijal. Pored toga, otporni su i na eroziju.⁶¹ U posljednje vrijeme, prirodni i modificirani zeoliti su postali vrlo popularni zbog mogućnosti vezanja teških metala i radioaktivnih tvari. Primjena prirodnih zeolita u obradi otpadnih voda koje su onečišćene toksičnim metalima (cink, željezo, krom i dr.) vrlo je velika zbog ekonomske isplativosti, izvrsnih fizikalno-kemijskih svojstava zeolita i, danas vrlo važnog aspekta, ekološke prihvatljivosti.

Struktura zeolita sastoji se od trodimenzionalne mreže $(SiO_4)^{4-}$ i $(AlO_4)^{5-}$ tetraedara, spojenih kisikovim atomima.⁶² Neutralizacija negativnog naboja kod $(AlO_4)^{5-}$ tetraedara vrši se ugradnjom hidratiziranih alkalijskih i zemnoalkalijskih kationa $(Na^+, K^+, Ca^{2+}, Mg^{2+})$ koji ulaze u šupljine i kanale gdje pokazuju vrlo veliku pokretljivost. Struktura zeolita razlikuje se od ostalih alumosilikata i drugih kristalnih materijala u postojanju strukturnih šupljina međusobno povezanih kanalima određenog oblika i veličine. Priroda slobodnog prostora u dehidratiziranim zeolitima važna je u određivanju fizikalnih i kemijskih svojstava.⁶³⁻⁶⁸

Šupljine i kanali u prirodnim zeolitima sadrže vodu, koja čini 10 – 25 % njihove mase. Zeolitna voda može se ukloniti grijanjem zeolita na temperaturi od nekoliko stotina stupnjeva celzijusa.

Dok su trodimenzionalne strukture kvarca i feldspata relativno guste ($\rho = 2,6 - 2,7 \text{ g/cm}^3$), strukture minerala zeolita znatno su otvorenije ($\rho = 2,1 - 2,2 \text{ g/cm}^3$).

Feng je ispitivao pucolansku reaktivnost različitih vrsta zeolita, kao i svojstva cementa i betona koji je sadržavao usitnjeni zeolit kao zamjenski dodatak.⁶⁹ Zeolit može pokazati veću apsorpciju vapna i čvrstoću nego kalcinirana glina. Guo i Liang su detaljno objasnili pucolansku reakciju između zeolita i kalcijevog hidroksida.⁷⁰ U prisustvu vapna dolazi do razaranja slojeva tetraedara aluminija i silicija pod utjecajem OH⁻ iona (depolimerizacija). Razoreni tetraedri reagiraju s Ca²⁺ ionima iz otopine i formiraju C-S-H i C-A-H faze. Žarenje zeolita između 600 i 900 °C može poboljšati njegovu pucolansku reaktivnost, budući da zagrijavanje razara tetraedre aluminija i silicija čineći materijal podložnim napadima OH⁻ iona.

2.3. Čimbenici koji utječu na izluživanje stabiliziranog otpada

Izluživanje je proces u kojem se štetne tvari oslobađaju iz čvrste i prelaze u vodenu fazu uslijed otapanja, desorpcije ili kompleksiranja, a potencijal izluživanja ovisi o pH vrijednosti, redoks uvjetima i prirodi otopljene tvari. Ovaj proces je općenit, budući da svaki materijal u kontaktu sa otapalom, izlužuje (otpušta) komponente sa svoje površine ili iz unutrašnjosti ovisno o poroznosti.

S obzirom na potencijal izluživanja, razlikuju se dva tipa materijala: monolitni i granulirani. Monolitni materijali (**slika 11**) najčešće se izlužuju pod utjecajem difuzije, dok kod granuliranih materijala dominira izluživanje pod utjecajem perkolacije (ekstrakcija s pomoću organskih otapala).

Mnogi čimbenici utječu na brzinu izluživanja i mogu se podijeliti na fizičke i kemijske faktore.

Slika 11. Izluživanje štetnih tvari iz monolitnog materijala⁷¹

2.3.1. Fizički čimbenici izluživanja

Općenito, fizički čimbenici utječu na način na koji otopina i čvrsti materijali reagiraju i na uvjete pri kojima se materijali izlužuju.

1) Osnovni mehanizmi transporta tvari iz čvrstog materijala u vodenu fazu

a) Difuzija predstavlja transport tvari kao rezultat kretanja molekula bez utjecaja strujanja vodene faze. Ovaj proces se javlja kod materijala koji imaju malu poroznost. U tom slučaju difuzija je ograničavajući čimbenik transporta. Brzina difuzije ovisi o gradijentu koncentracije određene komponente i vremenu.
b) Ispiranje površine je proces koji uključuje početno ispiranje topljivih

komponenata s vanjske površine monolita. Poslije početnog ispiranja difuzija postaje glavni faktor transporta kod monolitnih materijala.⁷²

2) Veličina čestica određuje udaljenost koju tvar mora prijeći od centra čestice do vodene faze. Kod malih čestica transport je brz, dok je kod velikih čestica ograničen difuzijom.

3) **Poroznost** se definira kao odnos između volumena pora i ukupnog volumena materijala. Transport vode u materijalu je lakši kod veće poroznosti materijala. Samim tim veće je i oslobađanje tvari tj. izluživanje.

4) Permeabilnost određuje prodiranje vode u materijal i otpuštanje teških metala iz strukture. Ovaj čimbenik je posebno važan kod monolitnih materijala.

5) Veličina i oblik monolita – količina tvari koja se izluži procesom difuzije ovisi o veličini i obliku materijala. To je povezano s veličinom slobodne površine koja je izložena vanjskom utjecaju. Nadalje, difuzija je brža kod materijala s većom slobodnom površinom po jedinici mase (m^2/kg) .

6) Erozija – kod monolitnih materijala erozija dovodi do povećanja slobodne površine čime se povećava gradijent teških metala. Time se povećava i otpuštanje metala iz materijala.⁷³ Otpuštanje metala u bitnoj mjeri ovisi o načinu protoka vode kroz materijal.

7) **Stupanj zasićenja** – laboratorijski testovi izluživanja se uglavnom izvode u uvjetima zasićenja. No, u prirodi odnos tekuće/kruto je mnogo manji od laboratorijskog.
2.3.2. Kemijski čimbenici koji utječu na izluživanje

1) Osnovni kemijski mehanizmi:

- otapanje (metalni oksidi iz materijala),
- adsorpcijski procesi (adsorpcija pozitivno nabijenih kationa teških metala na negativno nabijenu površinu) i
- dostupnost (sadržaj) tvari u materijalu (soli koje su vrlo topljive u vodi).

2) pH vrijednost – ključan je čimbenik koji utječe na izluživanje većine tvari. pH vrijednost otopine određuje maksimalnu koncentraciju tvari u vodenoj fazi, a svaki materijal posjeduje "krivulju izluživanja" u ovisnosti o pH. Cementni materijali obično posjeduju pH oko 12, dok keramički materijali imaju približno neutralan pH (slika 12).

Slika 12. Ovisnost količine izlužene tvari o pH vrijednosti⁷⁴

pH vrijednost pri kojoj dolazi do izluživanja teških metala ovisi prvenstveno o pH materijala, pH okoline i puferskog kapaciteta materijala. Krivulje izluživanja su slične i tipične za različite grupe elemenata, a razlike postoje samo u apsolutnim razinama izluženih tvari (**slika 13**).

Slika 13. Krivulje izluživanja različitih elemenata u ovisnosti o pH vrijednosti⁷⁴

Iz ovog proizlazi da su čimbenici koji utječu na izluživanje isti, samo je razlika u relativnom ponašanju pojedinih materijala (oksidi željeza, aluminija, glina itd.).

3) Kemijski oblik tvari – pored osnovnog i kemijski oblik tvari bitno određuje karakteristike izluživanja. Teški metali teže stvaranju stabilnih kompleksa prisutnih u vodi, zemljištu i vezivnim materijalima. Kompleksi metala su obično vrlo topljivi i mnogo brže se oslobađaju od nekompleksnih oblika.

4) Sastav – ima ograničen utjecaj na izluživanje većine elemenata. Iznimka su neaktivne topljive soli kod kojih maksimalni izluženi iznos tijekom određenog vremena odgovara ukupnom iznosu u materijalu.⁸

5) Oksidacijsko/redukcijsko stanje – utječe na oblik u kojem se tvari nalaze. Kod teških metala oksidacija povećava izluživanje, dok redukcija smanjuje. U sredinama bez kisika, redoks potencijal ima važnu ulogu u procesima izluživanja. U takvim sredinama stvaraju se različite kemijske faze koje imaju različitu topljivost od one kod aerobnih uvjeta. Kod testova izluživanja često je zanemaren utjecaj redoks potencijala.⁷⁵

6) Puferski kapacitet – određuje promjenu pH vrijednosti pod utjecajem vanjskih uvjeta. Primjer je neutralizacija cementnih produkata pod utjecajem CO₂ iz zraka. Tada lužnati puferski kapacitet određuje vrijeme koje je potrebno da se pH vrijednost smanji s jako lužnate (pH oko 12) do neutralne vrijednosti.

7) Ionska jakost otopine za izluživanje – utječe na otapanje komponenti iz produkta. Velika ionska jakost povećava izluživanje komponenti. Također, prisustvo drugih tvari u otopini za izluživanje može povećati izluživanje uslijed kompleksiranja (metali s kloridima i karbonatima).

8) Vrijeme – svojstva materijala i vanjski uvjeti mijenjaju se tijekom vremena. Primjer je karbonatizacija alkalnih proizvoda koja utječe na izluživanje ili povećanje slobodne površine monolita uslijed erozije tijekom dužeg vremenskog perioda. **9) Temperatura** – povećanje temperature često povećava otapanje materijala. Osim toga, povećanje temperature povećava brzinu kemijskih reakcija, a time i transport difuzijom.⁷²

2.3.3. Trajnost S/S kompozita

Stabilizirani otpad na bazi cementa je osjetljiv na fizičko-kemijske procese razgradnje. Na razgradnju S/S kompozita u velikoj mjeri utječu kemijski i mineraloški sastav te mikrostruktura materijala. Izlaganjem na zraku, na S/S kompozite utječu: CO₂, sulfati, kloridi, voda i dr.^{76,77} CO₂ ima najjači negativan utjecaj na strukturu stabiliziranog otpada. Karbonatizacija snižava pH tijekom reakcije CO₂ sa produktima hidratacije cementa te se na taj način troše kalcijev hidroksid i C-S-H faza. Ugradnja metala u cementni matriks rezultira smanjenjem sadržaja Ca(OH)₂ i povećava osjetljivost na kiselu koroziju.⁷⁸ Neka istraživanja su pokazala da karbonatizacija mijenja brzinu izluživanja pojedinih komponenti iz stabiliziranih otpada.^{79,80}

2.4. Laboratorijski testovi izluživanja

Testovi izluživanja se koriste diljem svijeta kako bi se odredila koncentracija i pokretljivost štetnih elemenata u stabiliziranim materijalima. Uvjeti pod kojim se provode ovi testovi su prilagođeni uvjetima u životnim sredinama zbog procjene karakteristika u realnim uvjetima. Također, testovi bi se trebali provoditi na način da se mogu što bolje kontrolirati i mijenjati. U prirodnim uvjetima velik broj čimbenika utječe na izluživanje štetnih tvari. Ipak se treba uzeti u obzir da testovi u laboratoriju ne mogu u potpunosti oponašati uvjete u okolišu.^{10,81}

Osnovni ciljevi testova za izluživanje su:

- klasifikacija opasnog otpada,
- procjena izluživanja štetnih tvari iz otpada u realnim uvjetima,
- simulacija uvjeta pri kojima dolazi do izluživanja,
- uzorkovanje,
- procjena efikasnosti stabilizacije otpada i
- određivanje kinetičkih parametara s ciljem modeliranja transporta štetnih tvari.

Glavni parametri koji kontroliraju izluživanje u laboratoriju su: heterogenost uzorka, priprema i njegovanje uzorka, sastav otopine za izluživanje, omjer tekuće/kruto i vrijeme kontakta.

Heterogenost uzorka

Potrebno je napraviti što reprezentativniji uzorak koji će prikazati stanje u realnim uvjetima.

Priprema i njegovanje uzoraka

Prije izvođenja testova potrebno je uzorke njegovati određeno vrijeme. U industriji cementa i betona standardizirano vrijeme njegovanja (hidratacije) je 28 dana. Testovi izluživanja općenito zahtijevaju posebnu tehniku pripreme uzoraka (sušenje, usitnjavanje i homogenacija). Zato je vrlo važno izabrati test koji će najbolje odgovarati uvjetima u okolišu.

Sastav otopine za izluživanje

Destilirana voda se najčešće koristi u procesima izluživanja. Još se mogu koristiti vodene otopine nekih soli (CaCl₂), EDTA i octena kiselina. Također se može koristiti i more kako bi se simulirali uvjeti uz obalu mora i oceana.

• Omjer tekuće/kruto (L/S)

Omjer tekuće/kruto znatno je veći u laboratorijskim uvjetima nego u realnim sustavima. Na ovaj način tekuća faza se lakše izdvaja i ima dovoljno tekućeg uzorka za analizu. No ako je cilj prikazati uvjete uz visoke koncentracije elemenata potrebno je da je ovaj odnos što niži.⁸²

Vrijeme kontakta

Vrijeme kontakta utječe na koncentraciju izluženih tvari sve dok se ne uspostavi ravnoteža. Međutim, u realnim sustavima nemoguće je postići pravu ravnotežu. Uspostavljanje ravnoteže je moguće pratiti mjerenjem električne vodljivosti ili pH.^{1,10}

2.4.1. Klasifikacija testova izluživanja

Testovi izluživanja mogu se podijeliti u dvije skupine: testovi ekstrakcije i dinamički testovi (**slika 14**). Osnovna razlika je što se kod testova ekstrakcije postiže stacionarno stanje (ravnoteža) dok kod dinamičkih testova ne dolazi do ravnoteže.

Slika 14. Klasifikacija testova izluživanja^{1,83}

2.4.1.1. Testovi ekstrakcije

Testovi ekstrakcije se koriste pri simulaciji ravnotežnih uvjeta. Ovi testovi zahtjevaju manju veličinu čestica uzoraka, kako bi se smanjilo vrijeme do uspostave ravnoteže. Brža reakcija ostvaruje se i intenzivnim miješanjem gdje se ostvaruje bolji kontakt između čvrste i tekuće faze (**slika 15**).

Slika 15. Različite metode miješanja kod testova ekstrakcije¹⁰

Poznati testovi ekstrakcije su: jednokratna ekstrakcija, paralelna ekstrakcija, sljedna ekstrakcija i "build up" ekstrakcija.

2.4.1.1.1. Jednokratna ekstrakcija (engl. Single – batch extraction)

Ova vrsta ekstrakcije zahtijeva jednu vrstu uvjeta pri kojima se tretira uzorak: točno određena masa uzorka pomiješa se s određenim volumenom sredstva za izluživanje u određenom vremenskom periodu. Na kraju procesa odvaja se čvrsta faza od tekuće te se u tekućoj fazi (eluatu) određuje sadržaj štetnih elemenata. Ovi testovi se vrše kraće vremensko razdoblje, obično nekoliko sati ili dana.

TCLP test (engl. Toxicity Characteristic Leaching Procedure, USEPA method 1311)⁸⁴ – predstavlja najčešće korišteni test jednokratne ekstrakcije. TCLP test obuhvaća ekstrakciju štetnih tvari iz 100 g usitnjenog uzorka sa odgovarajućim sredstvom za ispiranje. Omjer tekuće/kruto (L/S) je 20:1. Vrijeme postupka je 18 h \pm 2 h uz miješanje od 30 okretaja u minuti. Izbor sredstva za ekstrakciju ovisi o pH vrijednosti i svojstvima otpadnog materijala. Vrlo alkalni uzorci izlužuju se s otopinom čiste octene kiseline čiji je pH 2,88 ± 0,05. Ostali otpadni materijali se izlužuju sa otopinom octene kiseline čiji je pH 4,93 \pm 0,05. pH se regulira dodatakom 1M otopine NaOH. Nakon kontaktnog perioda, ekstrakt se filtrira kroz stakleni (0,8 µm) ili membranski (0,45 µm) filtar. Zatim se u filtratu pogodnom analitičkom metodom određuje sadržaj štetnih tvari. Ukoliko jedna ili više tvari prelazi granične vrijednosti propisane ovom metodom, otpadni materijal se definira kao opasan.^{1,85} Glavni nedostatak ove metode je nedovoljna količina octene kiseline koja se dodaje po gramu suhog otpadnog materijala (omjer 1:20). Nadalje, dodatak male količine lužnate otopine otpadnom materijalu, održao bi visoku pH vrijednost otopine za izluživanje pri kojoj većina metala ima slabu topljivost. Zbog ove činjenice mnogi otpadi bi bili prihvatljivi, no u prirodnim uvjetima bi otpuštali mnogo veće koncentracije štetnih tvari.

Standardni njemački test izluživanja (DIN 38414-S4⁸⁶) – podrazumijeva ekstrakciju štetnih tvari iz uzorka veličine čestica do 10 mm. Sredstvo za izluživanje je deionizirana voda, a omjer L/S je 10:1. Usitnjeni materijal se kontinuirano miješa

tijekom 24 sata, nakon čega se materijal filtrira i u filtratu se određuje sadržaj štetne tvari. Ovaj test odgovara europskom testu EN 12457-4.⁸⁷

2.4.1.1.2. Paralelna ekstrakcija (engl. Parallel – batch extraction)

Test paralelne ekstrakcije uključuje seriju ekstrakcija u jednom koraku. Cilj ove ekstrakcije je određivanje izluživanja materijala u uvjetima njegove eksploatacije uz mijenjanje, obično, jednog parametra (L/S, vrijeme). Karakteristike eluata se obrađuju u funkciji test varijable (**slika 16**). Najčešće korišteni testovi paralelne ekstrakcije su: BS EN 12457 i ANC test.

Slika 16. Shematski prikaz paralelne ekstrakcije⁸⁸

BS EN 12457 obuhvaća seriju testova izluživanja za granulirani otpad i mulj, a temelji se na standardnim procedurama DIN 38414 S4, NEN 7343 i ONORM S 2072 kako bi se zadovoljili zahtjevi Europske unije. Test se temelji na omjeru L/S većem od 1/3 i vremenu izluživanja od 24 sata. Prati se utjecaj, najčešće, anorganskih tvari na postupke stabilizacije u solidificiranim materijalima. Pri tome se ne uzimaju u obzir nepolarne organske tvari ni mikrobiološki procesi u organskom otpadnom materijalu.¹

ANC test (engl. Acid Neutralization Capacity) predstavlja sposobnost materijala da neutralizira kiselinu. Na taj se način vrši procjena dugotrajnog ponašanja materijala, zbog utjecaja na kompaktnost materijala i taloženje metala. Test uključuje miješanje uzorka sa većim dodatkom kiseline u periodu od 2 dana.^{55,89-91}

2.4.1.1.3. Slijedna ekstrakcija

Kod slijedne ekstrakcije uzorak smanjene veličine čestica je podvrgnut seriji različitih uvjeta izluživanja. Na kraju svake serije odvaja se tekuća od krute faze te se kruta faza vraća u postupak. Varijable testa izluživanja mogu biti iste ili promjenjive za svaki korak ekstrakcije.^{92,93}

2.4.1.1.4. "Build up" ekstrakcija

Kod ove vrste ekstrakcije više uzoraka se nalaze u istoj otopini za izluživanje. Na ovaj način se simulira otopina koja je zasićena s koncentracijom svih elemenata. Uzorak je usitnjen kako bi se povećala specifična površina, a volumen otopine za izluživanje je manji s obzirom na druge testove.

2.4.1.2. Dinamički testovi

Dinamički testovi obuhvaćaju povremenu zamjenu ili kontinurani protok otopine za izluživanje kako bi se osigurala velika razlika u koncentraciji između čvrste i tekuće faze. Ovi testovi su skuplji od testova ekstrakcije i zahtijevaju više vremena, ali pomoću njih se dobivaju informacije o kinetičkoj pokretljivosti štetnih tvari i složenim mehanizmima procesa izluživanja. Zamjena otopine za izluživanje može biti kontinuirana ili u određenim vremenskim razdobljima. Odnos L/S mnogo je veći nego kod ekstrakcijskih testova, a izluživanje se temelji na površini čestica. Uzorci mogu biti monolitni ili granulirani ovisno o odgovarajućoj proceduri.

Dinamički testovi mogu se podijeliti u 4 skupine:

- "flow around" test,
- "tank test" (test difuzije),
- "flow through" test i
- "soxhlet" test.¹

2.4.1.2.1. "Flow - around" test

Kod ovog testa otopina za izluživanje pumpa se pokraj i iznad površine materijala i sakuplja se na određenoj razini. Ovakvi testovi se mogu izvoditi na monolitnom i granuliranom materijalu. Iako ovakvi testovi "simuliraju" ponašanje materijala u uvjetima realnog okruženja, praktična primjena je ograničena zbog analitičkih mogućnosti.^{1,94} Naime, zbog male brzine difuzije i velikog volumena, koncentracija štetnih metala su ispod granice detekcije.

2.4.1.2.2. "Tank" test (test difuzije)

"Tank test" se koristi za monolitne uzorke, a vrši se potpunim potapanjem uzorka u otopinu za izluživanje u zatvorenoj posudi. Uzorci mogu biti različitog oblika (cilindri, kugle, kocke) i različitih dimenzija. Otopina za izluživanje najčešće je deionizirana ili destilirana voda, a izluživanje se vrši pri statičkim (nema zamjene otopine) ili poludinamičkim uvjetima (periodična zamjena otopine svježom količinom).^{1,95}

Slika 17. Shematski prikaz poludinamičkog testa⁹⁶

ANS 16.1⁹⁷ je difuzijski test koji osigurava informacije o stvarnoj brzini i vremenu oslobađanja štetnih metala iz solidificiranog materijala. To je poludinamički test koji procijenjuje izluživanje metala u uvjetima koje kontrolira difuzija. Pomoću

ovog testa može se odrediti kumulativna količina metala koja se izluži u određenom vremenskom periodu.

2.4.1.2.3. "Flow - through" test

Ovaj test, koji se još zove "test izluživanja u kolonama" (**slika 18**), predstavlja prolaz otopine za izluživanje kroz čvrsti materijal i njegovo sakupljanje nakon kontakta. Postoje različite izvedbe ovog testa ovisno o smjeru protoka (uz i niz kolonu). Postupak se sastoji od kontinuiranog propuštanja otopine za izluživanje (demineralizirana voda) kroz uzorak. Veličina čestica uzorka je manja od 4 mm. Skuplja se sedam frakcija eluata u L/S opsegu 0,1 – 10 L/kg.

Slika 18. Shematski prikaz testa izluživanja u kolonama⁹⁸

Problem testa izluživanja u kolonama se može javiti kod materijala s malom propusnosti kada se otopina za izluživanje kreće sporednim putem (uz stijenke kolone) uz istovremeno začepljenje pora. Ovaj nedostatak se može izbjeći promjenom toka otopine za izluživanje (uz kolonu).⁷³

2.4.1.2.4. "Soxhlet" test

Kod Soxhlet testa čvrsti uzorak je u stalnom kontaktu sa svježom otopinom za izluživanje koja kontinuirano izlužuje štetne tvari iz uzorka. Aparatura se sastoji iz reakcijske posude, spremnika otopine za izluživanje i posude u kojoj isparava otopina za izluživanje, gdje se svježa količina otopine kondenzira prije kontakta s čvrstim materijalom.¹

U tablici 3 prikazane su prednosti i nedostatci osnovnih testova izluživanja.

Vrsta testa	Prednosti	Nedostatci	
	- simuliranje realnih uvjeta	- dugotrajni (nekoliko	
	- kontroliranje i mijenjanje uvjeta	mjeseci)	
	tijekom eksperimenta	- loša ponovljivost	
	- mogućnost fizičkih promjena na	- komplicirano izvođenje	
Ekstrakcijski testovi	uzorcima s ciljem što boljeg	- teško zadržati	
	oponašanja realnih uvjeta	reprezentativne in-situ	
	- monolitne uzorke ne treba	uzorke	
	pripremati	- kvalitativni rezultati	
	- mogućnost ubrzanja testa		
	- jednostavna kontrola otopine za	- teško objasniti rezultate	
	izluživanje	- odstupanje od difuzijskih	
	- monolitni uzorci bez pripremanja	uvjeta in-situ	
Difuzijski testovi	- dobro poznati difuzijski mehanizmi	- kvalitativni rezultati	
	 nije potrebno razdvajanje tekuće 		
	od krute faze		
	- jednostavni za izvođenje	- ne predstavlja realne	
	- mogućnost kratkotrajnosti i	uvjete	
	kontroliranih uvjeta	- utjecaj sušenja na štetne	
	- jednostavna analiza uzoraka	tvari	
	- sušenje olakšava usitnjavanje i	- sušenje, mljevenje,	
	mljevenje	centrifugiranje i deionizirana	
	- deionizirana voda se lakše	voda ne	
Testovi u kolonama	kontrolira i ne utječe na S/S	predstavljaju realne	
	procese	procese	
	- otopina za izluživanje se može	 teško odvajanje nekih 	
	zamjeniti svježom količinom	minerala od tekuće faze što	
		utječe na rezultat	
		- mogućnost utjecaja	
		filtriranja na kemijsko	
		određivanje	

Tablica 3. Pregled prednosti i nedostataka osnovnih testova izluživanja¹⁰

2.4.1.2.5. Difuzijski model izluživanja

Difuzijski model izluživanja (ANS 16.1) se koristi u dugotrajnoj procjeni izluživanja metala iz S/S materijala. Ovaj model koristi Fickov zakon difuzije koji preko brzine difuzije metala procjenjuje uspješnost S/S postupka.

Stvarni koeficijenti difuzije se izračunavaju prema izrazu:

$$\mathbf{D}_{\mathbf{k}} = \boldsymbol{\pi} \cdot \left[\frac{\left(\frac{a_n}{A_0} \right)}{\left(\Delta t \right)_n} \right]^2 \cdot \left[\frac{V}{S} \right]^2 \cdot T_n \tag{10}$$

gdje je:

 D_k – stvarni koeficijent difizije (cm²/s),

a_n – gubitak štetne tvari (mg) tijekom određenog vremenskog perioda n,

A₀ – početni iznos štetne tvari u uzorku (mg),

 $(\Delta t)_n$ – vrijeme izluživanja (s),

V - volumen uzorka (cm³),

S – specifična površina uzorka (cm²) i

T_n – proteklo vrijeme izluživanja na sredini perioda izluživanja n (s).

Koeficijenti difuzije su "stvarni" zato što se difuzija događa u tekućinom napunjenim inersticijskim mjestima poroznog materijala.⁹⁹⁻¹⁰⁴

Uspješnosti S/S procesa može se procijeniti određivanjem vrijednosti indeksa izluživanja (LI). LI predstavlja negativni logaritam stvarnog koeficijenta difuzije (izraz **11**):

$$\mathrm{LI} = \frac{1}{m} \cdot \sum_{n=1}^{m} \left[-\log(D_k) \right]_n \tag{11}$$

gdje je:

n – period izluživanja,

m – broj perioda izluživanja.

LI se može koristiti kao kriterij uspješnosti za korištenje i odlaganje S/S otpada. Kada je vrijednost LI veća od 9, korišteni proces se može ocijeniti kao efikasan, a stabilizirani otpad se može "kontrolirano koristiti" (engl. "controlled utilization"). Ovaj podatak pokazuje da su S/S otpadi prihvatljivi za specifične uporabe, kao što su sanacije kamenoloma, zatvaranje laguna i izgradnja cesta. Kada je vrijednost LI veća od 8, S/S otpadi se mogu koristiti u sanaciji razjedinjenih i sanitarnih deponija. S/S otpadi s vrijednostima LI manjim od 8 nisu prikladna za odlaganje.^{105,106}

Određivanje mehanizma izluživanja

Mehanizmi po kojima dolazi do otpuštanja metala iz uzorka određuju se pomoću difuzijskog modela kojeg su razvili de Groot i van der Sloot 1992. godine. Kontrolni mehanizam izluživanja se određuje iz nagiba pravca logaritma zbirnog otpuštanja, log (B_t), u odnosu na logaritam vremena (log(t)) prema jednadžbi **12**:

$$\log (\mathbf{B}_{t}) = \frac{1}{2} \cdot \log(t) + \log \left[U_{\max} \cdot d \cdot \sqrt{\left(\frac{D_{k}}{\pi}\right)} \right]$$
(12)

gdje je:

 D_k – stvarni koeficijent difizije (m²/s),

 B_t – maksimalno zbirno otpuštanje komponenti (mg/m²),

t – vrijeme izluživanja (s),

Umax – maksimalno mogući iznos komponente za izluživanje (mg/kg) i

d – gustoća produkta (kg/m³).

Ako nagib pravca iz jednadžbe **12** iznosi 0,5, tada je difuzija kontrolni mehanizam otpuštanja štetne primjese. Uz nagib pravca otprilike oko 1, kontrolni mehanizam izluživanja je otapanje. U tom slučaju, otapanje materijala s površine je brže od difuzije kroz pore.

Povremeno, moguće je postojanje topljivog sloja na površini materijala. U početku, većina topljivih tvari će se otopiti s površine. Ovaj proces je poznat kao i ispiranje, a pojavljuje se uz nagib pravca oko 0.¹⁰⁷

2.5. Metode i tehnike praćenja procesa hidratacije stabiliziranog otpada

Pri hidrataciji cementa odvijaju se vrlo složeni procesi i reakcije u heterogenom reakcijskom sustavu.¹⁰⁸ Tijekom tih procesa reakcijski sustav prelazi iz stanja paste u konačno čvrsto stanje. Danas se koristi cijeli niz metoda i tehnika koje daju informacije o procesima hidratacije, kinetici i dinamici promatranih sustava.

Najviše se koriste tehnike koje istražuju pojave i u području prirodnih i drugih silikata, kao što su:

- kalorimetrijske metode (kalorimetrija i mikrokalorimetrija),
- elektrokemijske metode (konduktometrija i pH-metrija),
- metode toplinske analize (TG, DTG),
- rendgenska fluorescentna analiza ili spektrografija (EDXRF) i
- infracrvena spektroskopija (FTIR).

2.5.1. Praćenje hidratacije stabiliziranog materijala određivanjem topline hidratacije

Toplina hidratacije²⁰ je posljedica egzotermne reakcije cementa s vodom, a rezultat je sljedećih pojava:

- topline kvašenja cementnog praha,
- topline otapanja cementnih minerala u vodi,
- topline kemijskih reakcija u kojima se stvaraju hidrati,
- topline adsorpcije vode u produktima hidratacije i
- topline kristalizacije pri stvrdnjavanju cementne paste.

Toplina hidratacije ovisi o:

- kemijskom sastavu cementa,
- odnosu kristalne i staklaste faze,
- načinu obrade klinkera,
- finoći mljevenja,
- vodocementnom omjeru,
- prethodnoj hidrataciji i
- temperaturi.

Cilj određivanja topline hidratacije je predviđanje mogućih naprezanja u betonu kao građevnom materijalu, te određivanje termokemijskih svojstava cementa (da li je riječ o cementu visoke ili niske topline hidratacije).

Metode koje se koriste za određivanje topline hidratacije dijele se na računske i eksperimentalne metode. Eksperimentalne metode se izvode pomoću kalorimetara.

U praktičnoj primjeni se koriste dvije vrste kalorimetara:

- kalorimetri s promjenjivom temperaturom i
- kalorimetri s konstantnom temperaturom.

Eksperimentalno određivanje topline hidratacije provodi se pomoću direktne i indirektne metode. Najčešće primjenjivane direktne metode su: adijabatska metoda i metoda termos boca, diferencijalna kalorimetrija i mikrokalorimetrija, dok u indirektne metode spada metoda otapanja.

2.5.1.1. Mikrokalorimetrija

Mikrokalorimetrija je suvremena istraživačka tehnika koja ima dvostruku primjenu, kao:

- analitička tehnika i
- termodinamička tehnika.

Mikrokalorimetrija omogućuje kvantitativna određivanja topline u iznosu od $4 \cdot 10^{-4}$ J pa na više, te registrira promjene temperature od 10^{-7} do 10^{-8} °C uz korištenje male količine reaktanata, reda µmola ili nekoliko µmolova u radnom volumenu uređaja od 10 cm³.

Mikrokalorimetrija je kontinuirana i izravna metoda kod koje su subjektivne i sustavne pogreške zanemarive. Tijekom određivanja nije potrebno prekidati reakciju niti uzimati uzorke za analizu.

Mikrokalorimetri su mjerni uređaji kojima se prate fizikalno-kemijske promjene koje se javljaju zbog promjene topline tijekom odvijanja kemijskih reakcija. Dijele se na:

- izoperibolne,
- izotermne:
 - 1) s faznim prijelazom
 - 2) s termoelektričnom pumpom
- adijabatske i
- kondukcijske.

Kalorimetrijske metode doprinose boljoj primjeni cementa, kontroli kvalitete cementa i optimiranju procesnih uvjeta pri proizvodnji, razumijevanju utjecaja

dodataka, razvoja mikrostrukture i mehaničkih naprezanja u materijalu kao i predviđanju čvrstoće cementnih kompozita.²⁶

Kalorimetrijski uređaji mogu biti izvedeni s jednom ili dvije kalorimetrijske jedinice. Mikrokalorimetrijski uređaji, kod kojih se traži velika osjetljivost, primjenjuju se kao sustavi s dvije kalorimetrijske jedinice te se nazivaju "diferencijalni mikrokalorimetri", DMK.¹⁰⁹

Kod DMK se javlja razlika potencijala između dviju serija termoparova. Promatrani proces se odvija u mjernoj kalorimetrijskoj jedinici, dok druga služi kao referentna jedinica čime se uklanjaju ili smanjuju pogreške uzrokovane utjecajem okoline.¹¹⁰

2.5.2. Konduktometrija

Električna provodnost je svojstvo neke tvari da provodi električnu struju. U otopinama i talinama soli nosioci naboja su ioni. Pod utjecajem elektrona odvija se putovanje iona prema elektrodama. Pozitivni putuju prema negativnoj, a negativni prema pozitivnoj elektrodi. Pri mjerenju provodnosti elektrolita koristi se izmjenična struja frekvencije 1000 Hz između elektroda dovoljno velike površine. Istosmjerna struja se ne može koristiti jer bi došlo do elektrolize, a osim toga javila bi se i polarizacija suprotnog smjera upotrebljenom članku.

Električni otpor otopine elektrolita ovisi o:

- broju prisutnih iona,
- naboju iona,
- provođenju struje ionske vrste,
- efektivnoj površini elektrode,
- udaljenosti između elektroda i
- temperaturi otopine.

Mjera za provodnost elektrolita je recipročna vrijednost otpora 1/R i izržava se u Simensima (S). Ako je površina elektroda 1 cm², a elektrode su na udaljenosti od 1 cm, provodnost otopine se naziva specifična provodnost, κ . Specifična provodnost je, dakle, provodnost kocke tekućine s bridom od 1 cm i jedinica je Scm⁻¹.

Mjerenje električne provodnosti provodi se u konduktometrijskim ćelijama. Ove ćelije su pogodne i osiguravaju točnost mjerenja. Naime, pogreške uzrokovane efektima rubnih polja svedene su na minimum, jer se cjelokupno mjerno polje nalazi između tijela elektroda.

Postoji više različitih tipova mjernih instrumenata. Za mjerenje provodnosti izmjeničnom strujom koristi se Mullardov konduktometar (modificirani Wheatstoneov most).

Danas su u uporabi visoko precizni, digitalni instrumenti s operacijskim pojačalima te mikroprocesorima za obradu mjernih podataka, koje karakterizira visoki ulazni otpor od nekoliko $M\Omega$.¹¹¹

2.5.3. Termogravimetrijska metoda analize

Termogravimetrija (TG) je metoda pomoću koje se prate fizikalno-kemijski procesi neprekidnim vaganjem uzorka tijekom zagrijavanja. Registrirane krivulje pokazuju promjenu mase uzorka unutar određenog temperaturnog intervala i tako daju informaciju o gubitku mase, gubitku vode, oslobađanju CO₂ itd., na određenim temperaturama. Iz TG krivulja se dobivaju kvantitativni podatci, tako da se iz gubitka mase može izračunati količina prisutnog spoja.

TG metoda se koristi kao dopuna diferencijalno toplinskoj analizi (DTA). DTA, ipak, ima šire područje primjene. Naime, TG ne registrira promjene u materijalu u kojima ne dolazi do promjene mase (reakcije u čvrstom stanju). Suvremene aparature imaju mogućnost istovremenog registriranja DTA i TG krivulja u kombinaciji s derivacijskom TG krivuljom (DTG krivulja).

TG se primijenjuje u proučavanju procesa koji se dešavaju pri vezivanju i očvršćavanju cementa. Brzina procesa vezivanja i očvršćivanja cementa se može pratiti preko količine vode koju kemijski vežu minerali klinkera (alit, belit, aluminat i aluminat ferit) pri hidrataciji. Ako se pri tome zna sastav hidrata i količina vode, tada količina vezane vode može poslužiti i kao kvantitativni pokazatelj stupnja hidratacije cementa.¹¹²

2.5.4. EDXRF metoda

EDXRF (engl. Energy Dispersive X-ray Fluoroscence) je metoda rendgenske fluorescentne analize, a zasniva se na principu spektroskopije "karakterističnog" rendgenskog zračenja. Za dobivanje "karakterističnih" rendgenskih spektara, potrebno je atomu dovesti energiju koja je dovoljna da izbaci elektron iz neke od unutarnjih ljuski. Energiju potrebnu za dobivanje "karakterističnih" rendgenskih spektara može se atomima dovesti na više načina: bombardiranjem atoma elektronima (kao kod nastajanja rendgenskih zraka u rendgenskoj cijevi), radioaktivnim zračenjem ili obasjavanjem rendgenskim zrakama.

Analizirani uzorak se obasja npr. rendgenskim zrakama koje pobuđuju atome elemenata u uzorku na zračenje svojih "karakterističnih" rendgenskih spektara. Dolazi, dakle, do pojave rendgenske fluorescencije, pa su tako dobiveni spektri, zapravo, fluorescentno rendgensko zračenje (**slika 19**). Elementi se međusobno razlikuju energijom elektronskih ljusaka svojih atoma, pa su rendgenske zrake koje nastaju prijelazom elektrona između tih ljusaka karakteristične za dotični element; ne postoje dva elementa s jednakim "karakterističnim" spektrima.

Slika 19. Shematski prikaz spektroskopije X- zraka

Rendgenska fluorescentna analiza se razvila tek nakon 2. svjetskog rata, usavršavanjem brojača za detekciju zračenja. Metoda daje elementarni sastav uzorka, odnosno kemijsku analizu (dok se rendgenskom difrakcijom dobiva mineraloški sastav uzorka).^{113,114}

2.5.5. Infracrvena spektroskopija (engl. Fourier Transform Infrared Spectroscopy, FTIR)

Infracrvena spektroskopija se koristi za analizu anorganskih i organskih spojeva. Temelji se na sposobnosti molekula da apsorbiraju infracrveno zračenje onih frekvencija koje odgovaraju energiji promjena njihovih molekulskih vibracija. Infracrveni spektrometar prikazuje podatke u obliku spektra s velikim brojem vrpci koje predstavljaju kemijske veze između dva određena atoma ili dviju grupa atoma u molekuli. IC spektar daje podatke o prisutnim funkcionalnim grupama preko kojih je onda moguće izvesti zaključke o strukturi novog ili neidentificiranog spoja. Dobiveni se spektar radi identifikacije i interpretacije uspoređuje sa setom poznatih materijala koji služe kao reference.¹¹⁵

Primjena infracrvene spektroskopije na cement i beton počinje još 1968. godine, kada je održan Simpozij u Tokiju. Iako je relativno novija tehnika u području cementa i betona, postaje sve važnija i zastupljenija s napretkom instrumentacije i karakterizacije produkata hidratacije, kao novih spojeva itd.¹¹⁶

Na slici 20 prikazana je shema infracrvenog spektrometra.

Slika 20. Shema infracrvenog spektrometra¹¹⁷

3. METODIKA

3.1. Materijali

3.1.1. Portland cement

U radu je korišten portland cement (prema normi HRN EN 197-1 CEM I 42,5 R),¹¹⁸ kao komercijalni proizvod cementare CEMEX Hrvatska iz Kaštel Sućurca. Kemijski sastav dobiven EDXRF aparatom i fizikalno-mehanička svojstva portland cementa prikazani su **tablici 4**. Za hidrataciju cementa korištena je ultra čista voda (provodnost $\kappa = 0,054 \mu$ S/cm).

CEW I + 2,5 K				
Sastojak	Udjel	Fizikalno svojstvo i mjerna veličina	Iznos	
	sastojka,			
	mas. %			
SiO ₂	26,53	Specifična površina po Blaine-u, cm ² /g	3300	
Al_2O_3	5,42	Standardna konzistencija, mas. %	26	
Fe ₂ O ₃	2,82	Početak vezanja, min	85	
CaO	68,44	Kraj vezanja, min		
MgO	1,77	Prosječne čvrstoće na savijanje, MPa		
SO_3	3,00	- na 3 dana	6,52	
K ₂ O	1,89	- na 28 dana	8,44	
Ti	0,37	Prosječne čvrstoće na tlak, MPa		
Mn_2O_3	0,12	- na 3 dana	33,50	
Cr_2O_3	0,04	- na 28 dana	50,70	
Gubitak žar.	0,04			

Tablica 4. Kemijski sastav i fizikalno-mehanička svojstva portland cementaCEM I 42,5 R

3.1.2. Prirodni zeolit zasićen cinkom

Prirodni zeolit zasićen Zn²⁺-ionima dobiven je zasićivanjem prirodnog zeolitnog tufa otopinom koja sadrži 9,0 mmol/dm³ ZnSO₄. Zeolit je iz nalazišta Donje Jesenje, Hrvatska. Sadrži mineral klinoptilolit, čija je formula (NaK)₂O·Al₂O₃·10SiO₂·8H₂O, kao glavni mineral i nečistoće u obliku: ilita, montmorilonita, feldspara, kalcita i kvarca. Sastav prirodnog zeolita prikazan je u **tablici 5**.

Sastojak	SiO ₂	Al_2O_3	Fe ₂ O ₃	Na ₂ O	K ₂ O	CaO	MgO	Gub. žar.
Udjel sastojka, mas. %	64,93	3 13,39	2,07	2,40	1,30	2,00) 1,08	9,63

Tablica 5. Kemijski sastav prirodnog zeolita

Nakon zasićenja, zeolit je osušen pri 60 °C, usitnjen i prosijan kroz standardno sito s 4900 očica/cm².

3.1.3. Mulj iz pogona pocinčavanja "ADRIA CINK"

Mulj je dobiven iz otpadnih voda pogona pocinčavanja nakon procesa oksidacije (propuhivanje sa zrakom) i taloženja s vapnom u bazenima. Mulj je sivo-smeđe boje, sitnozrnate strukture i vlažan. Udjel vlage određen sušenjem pri 105 °C do konstantne mase iznosio je 19,41 mas. %, a gubitak žarenjem suhog uzorka pri 1000 °C iznosio je 1,29 mas. %. Izmjerena pH vrijednost iznosi 6,58 (50 mas. % suhog mulja i 50 mas. % destilirane vode), a udjel otopljenog dijela iz mulja iznosi 17,85 mas. %. Mulj je usitnjen i prosijan kroz standardno sito 4900 oč/cm², tako da je veličina čestica slična ili jednaka veličini čestica portland cementa. Sastav mulja nije konstantan, a najvećim dijelom zastupljeni su spojevi cinka, željeza i kalcija i nečistoće iz oborinskih voda (zemlja, pijesak, prašina i dr.).

3.1.4. Standardni pijesak

U pripravi cementnog morta za određivanje čvrstoća cementa uz dodatke korišten je standardni kvarcni pijesak francuske proizvodnje oznake Sable Normalise Certifie CEN, EN 196-1.

3.1.5. Korištene kemikalije

- 1. Olovo(II) oksid, PbO, p.a., P.P.H. Polskie Odezynniki Chem-Gliwice, Poljska.
- 2. Amonij bikromat, (NH₄)₂Cr₂O₇, ABK, p.a., Kemika, Zagreb.
- 3. Olovo(II) kromat. PbCrO₄, p.a., Kemika, Zagreb.
- 4. Kalij bromid, KBr, p.a. (spektroskopski čist), Sigma-Aldrich, Njemačka.
- 5. Ultra čista redestilirana voda ($\kappa = 0,054 \ \mu\text{S/cm}$).

3.2. Priprema uzoraka i provedba eksperimenata

3.2.1. Priprema cementnih pasta za mikrokalorimetrijska i konduktometrijska mjerenja

Sustav cement-mulj-zasićeni zeolit

Cementne paste su pripremljene miješanjem CEM I, mulja iz pogona pocinčavanja i zasićenog zeolita s ultra čistom redestiliranom vodom. Udjel mulja (M) iznosio je $w_M = 2$, 5, 10 i 20 mas. %; 5, 10, 20 i 30 mas. % smjese mulja i zasićenog zeolita (Z) (udio mulja u zeolitu $w_z = 20$, 30, 40 i 50 mas. %) u odnosu na ukupnu masu krutog uzorka. Oznake uzoraka su kako slijedi:C2M, C5M, C10M i C20M, C5Z20M, C10Z20M, C30Z20M, C5Z30M, C10Z30M, C20Z30M, C30Z30M, C5Z40M, C10Z40M, C20Z40M, C30Z40M, C5Z50M, C10Z50M, C20Z50M i C30Z50M. Referentni uzorak bez dodataka nosi oznaku CEM I.

Sustav cement-PbO-prirodni zeolit

Cementne paste su pripremljene miješanjem CEM I, PbO i prirodnog zeolita s redestiliranom vodom. Udjel PbO iznosio je $w_{PbO} = 0.2, 0.3, 0.4, 0.5, 0.6$ i 0,7 mas. %. Drugi dio uzoraka pripremljen je miješanjem CEM I s PbO (uz udjele w = 0.2 - 0.7 mas. %), te uz djelomičnu zamjenu portland cementa prirodnim zeolitom u iznosu od 20 mas. %.

Sustav cement-PbCrO₄-prirodni zeolit

Cementne paste su pripremljene miješanjem CEM I, PbCrO₄ i prirodnog zeolita s redestiliranom vodom. Udjel PbCrO₄ iznosio je $w_{PbCrO_4} = 0.5, 1, 1.5, 2, 2.5$ i 3 mas. %.

Drugi dio uzoraka je pripremljen djelomičnom zamjenom CEM I s prirodnim zeolitom u iznosu od 20 mas. %, uz iste udjele PbCrO₄.

Sustav cement-ABK-prirodni zeolit

Cementne paste su pripremljene miješanjem CEM I, ABK i prirodnog zeolita s redestiliranom vodom. Udjel ABK iznosio je $w_{ABK} = 1, 2, 3, 4$ i 5 mas. %. Drugi dio uzoraka je pripremljen zamjenom CEM I s prirodnim zeolitom u iznosu od 20 mas. %, uz iste udjele ABK.

Masa uzoraka za mikrokalorimetrijska mjerenja bila je stalna i iznosila je 4 grama, a masa uzoraka za konduktometrijska mjerenja je bila 100 grama. Vodocementni (V/C) i voda-kruto (V/K) omjer bio je stalan i iznosio je 0,5 za sve uzorke. Mjerenja su provedena pri temperaturi od 20 °C.

3.2.2. Priprema uzoraka za kvantitativno određivanje sastava cementa EDXRF uređajem

Priprema držača uzoraka

Polietilenska folija Poly 4 Oxford Instruments debljine filma 4 µm se skida s držača uzorka sa specijalnim valjkom. Ostaci folije se temeljito očiste da ne bi stvarali smetnje u daljnjim mjerenjima. Folija se nanosi u pripremljenom kalupu. Držač uzorka se sastoji od dva dijela: užeg i šireg. Na širem se nalazi prsten koji brtvi. Prvo se stavi uži dio i preko njega se prevuče folija. Zatim se stavi širi dio preko užeg (s prstenom prema gore). Na taj način se dobije fino razvučena folija bez nabora.

<u>Napomena</u>: Kod užeg dijela obla strana treba biti okrenuta prema gore da bi se izbjeglo kidanje folije.

Priprema cementnih tableta

Cementne tablete (**slika 20 a**) za kvantitativna određivanja su debljine 0,5 cm i isprešane su na hidrauličnoj preši HERZOG 40 (**slika 20 b**), uz zadržavanje 15 sekundi

pri konstantnom tlaku od 1961,33 MPa. Na slici 21 prikazan je pripremljeni držač s uzorkom (**Slika 21 a**), te rotirajuća ploča s držačima uzoraka EDXRF uređaja (**Slika 21 b**).

a) b) Slika 20. Cementna tableta (a)) i hidraulična presa HERZOG (b))

Slika 21. *Držač uzorka (a)) i rotirajuća ploča (b)) unutar EDXRF uređaja* Tlak plina He (helij) na izlasku iz boce mora biti 0,5 – 0,7 bar, zbog točnosti rezultata mjerenja.

3.2.3. Priprema smjesa soli kroma i olova za umjeravanje EDXRF uređaja

Umjeravanje aparata za određivanje koncentracija kroma i olova u portland cementu vršilo se pomoću ABK za krom, olovo(II) oksida za olovo i olovo(II) kromata

za krom i olovo. Zadani maseni udjeli i masa ABK u smjesi s cementnim prahom, te maseni udjeli preračunati na Cr_2O_3 prikazani su u **tablici 6**. Ukupna masa smjese je 20 grama.

Primjer proračuna masenog udjela ABK na krom(III) oksid:

Zadano: m (smjese) = 20 g; w (ABK) = 0,05 %; w (ABK) = { m(ABK)/m(smjese) }×100; m(ABK) = { w(ABK)×m(smjese) }/100 m(ABK) = 0,01 g M(ABK) = 252,062 g/mol; M(Cr₂O₃) = 151,989 g/mol n = m/M; n(ABK) = 0,01g/252,062g/mol = 0,000039672mol m = n×M; m(Cr₂O₃) = 0,000039672mol×151,989g/mol = 0,0060297g w(Cr₂O₃) = (0,0060297 g/20 g) × 100 = 0,0308 %

Tablica 6. Odvaga ABK za 20 g smjese i maseni postotci krom(III) oksida u smjesi

Uzorak	ABK, mas. %	ABK, g	Cr ₂ O ₃ , mas. %
1	0,05	0,01	0,0308
2	0,10	0,02	0,0624
3	0,25	0,05	0,1508
4	0,50	0,10	0,3016
5	0,75	0,15	0,4536
6	1,00	0,20	0,5788

Zadani maseni postotci olovo(II) oksida u smjesi sa cementnim prahom, te mase olovo(II) oksida prikazani su u **tablici 7**. Ukupna masa smjese je 10 g.

 Tablica 7. Odvaga i maseni postotci olovo(II) oksida za 10 g smjese

Uzorak	PbO, mas. %	PbO, g	
1	0,05 0,005		
2	0,10	0,010	
3	0,25	0,025	
4	0,50	0,050	
5	0,75	0,075	
6	1,00	0,100	

Zadani maseni postotci i masa olovo(II) kromata u smjesi sa cementnim prahom, te maseni postotci preračunati na Cr_2O_3 i PbO prikazani su u **tablici 8**. Ukupna masa smjese je 10 g.

Uzorak	PbCrO ₄ , mas. %	PbCrO ₄ , g	Cr ₂ O ₃ , mas. %	PbO, mas. %
1	0,05	0,005	0,0118	0,0345
2	0,10	0,010	0,0235	0,0691
3	0,25	0,025	0,0588	0,1727
4	0,50	0,050	0,1180	0,3453
5	0,75	0,075	0,1760	0,5180
6	1,00	0,100	0,2350	0,6906

Tablica 8. Odvaga olovo kromata za 10 g smjese i maseni udjeli krom(III) oksida iolovo(II) oksida u smjesi

3.2.4. Priprema uzoraka za izluživanje

Uzorci za izluživanje pripremljeni su u istim masenim udjelima kao i uzorci za mikrokalorimetrijska mjerenja, te pri istom vodocementnom i voda/kruto omjeru od 0,5. Nakon miješanja cementa, dodatka (mulj, zeolit, PbO, PbCrO₄ i (NH₄)₂Cr₂O₇) i redestilirane vode, uzorci su stavljeni u plastične posudice cilindričnog oblika (visine 2,5 cm i promjera 3 cm) (**slika 22 a**)) te su hidratizirani 28 dana u termostatu pri temperaturi od 20 °C.

Slika 22. Prikaz hidratiziranih uzoraka (a)) i treskalice s uzorcima (b)) u kojoj je provedeno izluživanje

Modificirani poludinamički test izluživanja (NEN 7345:2004)¹¹⁹

Nakon solidifikacije, uzorci su uronjeni u redestiliranu vodu uz omjer tekućina/kruto, L/S = 10:1. Izluživanje je provedeno u staklenim zatvorenim posudama uz primjenu treskalice (**slika 22 b**)) (brzina treskanja 80 okr/min) u vremenu od 18, 24, 72 i 168 sati. Treskalica se koristila kako bi se simulirali najgori uvjeti u prirodi. Nakon svakog perioda, otopina za izluživanje (redestilirana voda) se mijenjala i uzimali su se tekući uzorci u kojima se određivala koncentracija cinka, olova i kroma EDXRF uređajem. Kruti uzorci (**slika 22 a**)) nakon izluživanja su smrvljeni, osušeni pri 105 °C i prosijani kroz standardno sito, dimenzije očica 0,09 mm i spremljeni u eksikator za daljnja mjerenja.

3.2.5. Priprema uzoraka za termogravimetrijsku analizu i infracrvenu spektroskopiju

Uzorci za termogravimetrijsku analizu i infracrvenu spektroskopiju pripremljeni su u istim masenim udjelima kao i uzorci za mikrokalorimetrijska mjerenja i izluživanje. Vodocementni i voda/kruto omjer bio je stalan za sve uzorke i iznosio je 0,5. Nakon pripreme, uzorci su stavljeni u polietilenske vrećice i hidratizirani u termostatu 28 dana pri temperaturi od 20 °C. Nakon njegovanja, uzorci su usitnjeni, osušeni pri temperaturi od 105 °C i prosijani kroz standardno sito bez ostatka. Ovako pripremljeni uzorci su spremljeni u plastične posudice. Uzorci su ispitivani odmah nakon pripremanja.

3.2.6. Priprema cementnih mortova za određivanje čvrstoća

Cementni mortovi su pripremljeni prema hrvatskoj normi HRN EN 196-1. Omjer agregata i veziva (cement+mulj+smjesa mulja i zas. zeolita) je bio stalan i iznosio je 3:1. Tijekom pripreme korišten je normirani kvarcni pijesak, a vodocementni i voda/kruto omjer bio je stalan i iznosio je 0,5 za sve uzorke. Pripremljeni uzorci su stavljeni u kalupe dimenzija 160x40x40 mm i njegovani su prvih 24 sata u klima komori pri temperaturi od 20 °C. Ostalo vrijeme do određivanja čvrstoća su njegovani u termostatiranom bazenu s vodom pri temperaturi T = 20 ± 1 °C.

3.3. Instrumentacija i metode karakterizacije

3.3.1. Određivanje vremena vezanja cementa i cementnih kompozita standardnom metodom po Vicatu

Početak i kraj vezanja cementa i cementnih kompozita određuju se na uzorku cementne paste koji zadovoljava normalnu konzistenciju prema standardu **HRN EN 196-3**. Za određivanje početka i kraja vezanja koristi se Vicatov aparat (**slika 23**), kao i kod određivanja normalne konzistencije. Razlika je što se kod normalne konzistencije koristi valjak (promjera 1 cm), a kod vremena vezivanja igla (promjera 1 mm) + uteg od 20 g.

Slika 23. Vicatov aparat za određivanje normalne konzistencije i vremena vezivanja

U donji dio Vicatova aparata, sondu, stavlja se valjak koji s pokretnom sondom ima masu 300 g. Valjak s pokretnom sondom se spusti do staklene površine, a pločica sa skalom se postavi tako da kazaljka na stalku pokazuje donju nulu skale i skala se fiksira. Zatim se sonda s valjkom podigne i učvrsti.

U mesinganu posudu se izmjeri 400 g cementa ili cementnog kompozita (cement + dodatak) i doda se voda u iznosu 23 – 32 mas. % u odnosu na kruto. Cement i dodatci s vodom se miješaju i gnječe žlicom 3 minute, brzinom od 160 – 180 gnječenja/minuti. Nakon toga, cementnom pastom napuni se konusni prsten i poravna gornja površina paste bez potresanja.

Na poravnatu površinu spusti se valjak sonde, zatim se pusti da slobodno penetrira i prolazi kroz nju. Nakon 30 sekundi penetriranja pročita se položaj kazaljke na skali. Ako se valjak zaustavi na 5 - 7 mm iznad staklene površine, cementna pasta pokazuje normalnu konzistenciju.

Za određivanje početka vezivanja valjak se zamjeni iglom. Igla ne smije biti iskrivljena, te mora biti čista, obrušena i polirana. Da bi igla s pokretnom sondom imala ukupnu masu kao i sonda s valjkom $(300 \pm 2 \text{ g})$, na sondu se stavlja uteg.

Početak vezivanja određuje se tako da se igla postavi na gornju površinu cementne paste i svakih 5 – 10 minuta pusti da slobodno prodire 15 sekundi kroz pastu, nakon čega se očita visina od podloge na kojoj se zaustavi igla. Mjerenja se ponavljaju dok se igla ne zaustavi na visini od 3 – 5 mm od podloge. Vrijeme proteklo od trenutka dodavanja vode u cement do trenutka kada se igla zaustavi na ovoj visini predstavlja početak vezanja cementa. Kraj vezivanja određuje se nakon određivanja početka vezivanja i to tako da se uzorak s prstenom pažljivo skine sa staklene podloge i preokrene. Zatim se na isti način mjeri prodiranje igle kroz pastu. Vrijeme kraja vezanja predstavlja vrijeme proteklo od trenutka dodavanja vode u cement do trenutka kada je prodiranje igle kroz pastu manje od 1 mm.

3.3.2. Određivanje vremena vezanja cementa i cementnih kompozita pomoćuPb – Cu elektrodnog para

Elektrokemijska metoda određivanja vremena vezanja cementa i cementnih kompozita zasniva se na mjerenjima promjene elektromotorne sile (EMS). Sustav se sastoji od dvije metalne elektrode, olovne i bakrene, koje se nalaze uronjene u cementnu pastu. EMS u ovom sustavu u početku iznosi oko 300 mV. Za vrijeme rane faze hidratacije, EMS je konstantna ili neznatno pada, dok se ne postigne vrijeme vezanja. Kada cementno vezivo započne vezati EMS naglo raste i postiže vrijednost oko 500 mV. Kada je vezivanje završeno, EMS postaje konstantna i održava se oko 500 mV. Aparatura za određivanje vremena vezanja Pb – Cu elektrodnim parom prikazana je na slici **24**.

Slika 24. Shema aparature za određivanje vremena vezanja Pb – Cu elektrodom

Uzorak za određivanje vremena vezanja pripremi se na isti način kao i uzorci za Vicatovu metodu. Cement i voda se pomiješaju u određenom omjeru prema zadanom V/C faktoru (V/C = 0,5). Nakon miješanja u vremenu od 3 minute, pripremljena pasta se stavlja u držač uzorka. U pastu se stavlja Pb – Cu elektroda tako da se gornja površina same Cu – elektrode nalazi oko 1 – 2 mm ispod površine cementne paste. Elektrode se spoje na potenciometar i računalo na kojem se kontinuirano preko programa mogu pratiti promjene potencijala ovog elektrodnog sustava.

3.3.3. Diferencijalna mikrokalorimetrija

Razvoj topline hidratacije cementa određen je pomoću diferencijalnog mikrokalorimetra (DMK) u laboratoriju Zavoda. Aparatura se sastoji od nekoliko osnovnih dijelova kojima se mogu pratiti i određivati toplinski učinci procesa i reakcija koji se događaju u reakcijskom sustavu cement-dodatak-voda. Osnovni dijelovi aparature su: DMK s termostatskim uređajem, DATA Logger ALMEMO 2390-8 i osobno računalo.¹¹⁰

Na slici 25 prikazana je shema diferencijalnog mikrokalorimetra.

Slika 25. Aparatura za praćenje razvijanja topline hidratacije

Za uspješnu primjenu DMK, potrebno je, na odgovarajući način, izvršiti pripremu uzorka kao i pripremu aparature. Priprema uzorka započinje točnim vaganjem mase cementa i dodataka, kao i vode koja je potrebna za hidrataciju prema zadanom V/C odnosno V/K omjeru.

Određivanje točne mase cementa (4 grama) vrši se pomoću analitičke vage, nakon čega se odvaga stavi u držač uzorka, a zatim u mjernu ćeliju DMK. Držač uzorka sastoji se iz dva dijela: vanjskog, koji je izrađen od Al-folije, te unutarnjeg dijela izrađenog iz tanke polietilenske vrećice. Tanka polietilenska vrećica otporna je na agresivnost reakcijske smjese cementa, dodataka i vode, dok vanjska Al-folija omogućuje dobar i brz prijenos topline na stijenke mjerne ćelije DMK (dimenzije Alfolije su takve da ona priliježe uz stjenke mjerne ćelije DMK).

Redestilirana voda, kao jedan od reaktanata, mjeri se graduiranom pipetom. Zatim se prenosi u odgovarajući držač koji je smješten u čepu reakcijske ćelije. Taj držač je medicinski špric točno definiranog volumena (2 mL).

Da bi se osigurao ravnomjeran kontakt između cementa i vode odnosno ostvarilo dobro kvašenje, u uzorku cementa napravi se rupa u sredini tako da je debljina sloja uzorka u svim smjerovima približno ista.

Uzorak je spreman za mjerenje kad se mjerna ćelija zatvori čepom u kojem se nalazi špric s redestiliranom vodom, te poklopcem s vodenim plaštem. Zatim se uključi uređaj za registriranje mjernog signala, a to je Data Logger, kojim se prati toplinsko uravnoteženje temperature ili "toplinsko tariranje" u mjernoj i referentnoj ćeliji.¹²⁰

Uzorak se termostatira dok vrijednosti promjene naponske veličine registrirane na Data Loggeru ne postigne vrijednosti manje od $\pm 1,0 \mu$ V/h (nakon 24 sata). Kada se postigne ovo stanje, započne se mjerenje pritiskom klipa medicinskog šprica (ispusti se voda), čime se ostvari kontakt cementa s vodom. Tim kontaktom definiran je početak hidratacije. Praćenje toplinskih efekata vrši se prvih 48 sati hidratacije. Izmjerene vrijednosti promjene temperature u ovisnosti o vremenu $\Delta U = f(t)$ preko Dana Loggera unose se u računalo, gdje se vrši obrada tih podataka iz čega se dobiva grafički prikaz rezultata u obliku DMK krivulja. Isto tako, dobiveni rezultati se iz Data Loggera prebacuju u računalo gdje se, pomoću računalnog programa "Hidratacija cementa", obrađuju dajući određene veličine kao što su: toplina hidratacije, brzina oslobađanja topline i relativni stupanj hidratacije u ovisnosti o vremenu hidratacije.

3.3.4. Konduktometrija

Za određivanje specifične provodnosti u cementnim pastama korišten je mikroprocesorski konduktometar ISKRA MA 5964.¹²¹ Ovaj konduktometar je visoko precizni uređaj koji je povezan na osobno računalo preko RS 232 C na kojem se u točno određenim vremenskim intervalima (5 minuta) pohranjuju i obrađuju unesene vrijednosti. Mikroprocesorski konduktometar vrši mjerenja specifične provodnosti u širokom mjernom području od $1 \cdot 10^{-3} \,\mu$ S/cm do $1,3 \cdot 10^{3}$ mS/cm, te u temperaturnom području od -50 - 200 °C uz veliku preciznost i jednostavnost pri mjerenju.

Elektroda konduktometrijske ćelije je od nehrđajućeg čelika s vrijednosti konstante ćelije C = 0,2850 cm⁻¹. Kao referentni uzorak za određivanje konstante ćelije korištena je standardna 0,1 mol/L otopina KCl, standardne specifične provodnosti κ = 11,67 mS/cm pri 20 °C. Pripremljene uzorke cementnih pasta koji se nalaze u držačima uzoraka, prenese se u termostatiranu staklenu posudu s dvostrukim stijenkama kroz koju cirkulira voda temperature 20 °C. U tako pripremljene uzorke uranja se elektroda od nehrđajućeg čelika, mjerna posuda se zatvori poklopcem kroz koji prolazi elektroda konduktometrijske ćelije i mjeri spec. provodnost. Mjerenje je završeno kada mjerene vrijednosti spec. provodnosti kontinuirano padaju. Na slici **26** prikazana je aparatura za kontinuirano praćenje specifične provodnosti.

Slika 26. Aparatura za konduktometrijska mjerenja
a) konduktometar ISKRA i osobno računalo i
b) termostatirana posuda i elektroda od nehrđajućeg čelika.

3.3.4.1. Određivanje konstante ćelije konduktometra, C

Određivanje konstante ćelije provodi se tako da se ćelija za termostatiranje ispuni vodom i standardnom otopinom u čašici, te se termostatira pri temperaturi od 20 °C. Nakon uranjanja elektrode, mjehuriće zraka uklanja se laganom vrtnjom. Nakon toga, uključi se konduktometar i unose se odgovarajuće vrijednosti za konstantu ćelije, referentnu i trenutnu temperaturu.

Prilikom mjerenja temperatura treba biti konstantna, a tako i vrijednost konstante ćelije. Da bi se održala konstanta ćelije, potrebno je elektrodu ispirati destiliranom vodom tri puta, te jednom otopinom 0,1 mol/L KCl, a sve zbog točnosti mjerenja. Prilikom mjerenja vrijednosti konstante ćelije čeka se postizanje konstantne temperature i tek tada se započinje s očitanjem mjernih vrijednosti. Ako izmjerena vodljivost odstupa od očekivane mjerne vrijednosti za c(KCl) = 0,1 mol/L upisuje se druga vrijednost konstante ćelije dok se ne dobije zadovoljavajuća provodnost.

3.3.5. EDXRF uređaj za kvantitativnu analizu

Twin-X Oxford Instruments¹²² je stolni EDXRF uređaj koji se koristi pri analizi uzoraka kod određivanja sadržaja metalnih iona u uzorku. Ovaj uređaj koristi načelo energijske disperzije fluorescentne X-zrake pri određivanju koncentracije (mg/L) određenih elemenata u širokom rasponu materijala: čvrsto, tekuće, prah, pasta, u obliku filma, filtar papira. Twin-X je uređaj s dvije analitičke glave:

- Fokus - 5+ detektor i

- PIN diodni detektor.

Fokus - 5+ detektor omogućuje određivanje kemijskih elemenata s niskim atomskim brojem, npr. od magnezija (atomski broj 20) do cinka (atomski broj 30).

PIN diodni detektor omogućuje određivanje kemijskih elemenata u širokom rasponu, od kalcija (atomski broj 20) do urana (atomski broj 92).

Standardna operacija koristi zračno okruženje u mjernoj glavi. Ipak detektorska glava Fokus - 5+ može biti smještena u opciji "helijeve čistoće". Zamjenom zraka s helijem poboljšava se niskoenergijska učinkovitost u trenucima kad niskoenergijske Xzrake imaju više mogućnosti biti absorbirane u zraku. Helijevo "ispiranje" također eliminira argonove "pikove" iz zraka koji se mogu preklapati s drugim interesantnim pikovima. Rotirajuća ploča s držačima uzoraka može primiti do 10 uzoraka odjednom.

Postoje opcije rotirajuće ploče s većim promjerom držača uzoraka i okretač uzoraka za jednu ili dvije glave. Svrha okretača je osiguranje veće preciznosti i točnosti mjerenja nehomogenih uzoraka kao što su praškovi i granule.

Na slici 27 prikazana je aparatura za kvantitativnu EDXRF analizu.

Slika 27. Aparatura za kvantitativnu EDXRF analizu

- *a*) boca helija priključena na uređaj,
- *b)* EDXRF uređaj, model Twin-X s tipkovnicom i ekranom vlastitog računala.

3.3.5.1. Razvoj novih EDXRF metoda za određivanje koncentracije cinka, olova i kroma u otopinama nakon izluživanja

Za razvoj novih EDXRF metoda napravljene su standardne otopine cinka, olova i kroma koncentracija 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 i 100 mg/L. Ove otopine će poslužiti za crtanje baždarnih pravaca uređaja. Zatim je potrebno izmjeriti spektre za cink, olovo i krom u standardnim otopinama.

Snimanje spektara daje informaciju o intenzitetima (veći pikovi cinka, olova i kroma) uz istovremeno smanjenje interferencija (spektralnih preklapanja). Tijekom snimanja spektara potrebno je odabrati najbolje uvjete (detektor, filtere, napon, struju, plin i vrijeme mjerenja) zbog veće točnosti mjerenja. Nakon toga, snimaju se standardne otopine i crtaju se baždarni pravci. Izvrše se potrebne regresije i provede se provjera metoda standardnim otopinama.

3.3.6. Termogravimetrija

Kvantitativno određivanje Ca(OH)₂ i sadržaja kemijski vezane vode u uzorcima cementa i cementnih kompozita provedeno je na Pyris 1 TGA, Perkin Elmer aparatu (**slika 28**). Uzorci (mase oko 20 mg) zagrijavani su brzinom od 20 °C/min u struji dušika od 10 mL/min. Konačna temperatura zagrijavanja je bila 850 °C.

Slika 28. Pyris 1 TGA aparat¹²³

Određivanje Ca(OH)2

Na temelju promjene mase uzorka u temperaturnom području od 400 – 550 °C moguće je odrediti sadržaj kalcijeva hidroksida. To je jedini produkt hidratacije točno definiranog kemijskog sastava, preko čijeg sadržaja je moguće pratiti hidratacijske procese.

Toplinsko razlaganje Ca(OH)₂ može se prikazati kemijskom reakcijom:

$$Ca(OH)_{2(s)} \rightarrow CaO_{(s)} + H_2O_{(g)}$$
(13)

Gubitak mase iz reakcije (13) odgovara gubitku kemijski vezane vode, te je iz tog gubitka moguće odrediti maseni udio Ca(OH)₂ prema jednadžbi 14:

$$w(Ca(OH)_{2}) = \frac{\Delta m_{400-550^{\circ}C} \cdot M(Ca(OH)_{2})}{M(H_{2}O)}$$
(14)

gdje je:

w(Ca(OH)₂) – maseni udio kalcijeva hidroksida

 $\Delta m_{400-550}$ °_C – gubitak mase u temperaturnom području od 400 – 550 °C,

M(Ca(OH)₂) – molarna masa kalcijeva hidroksida i

M(H₂O) – molarna masa vode.
Određivanje kemijski vezane vode

Sadržaj kemijski vezane vode određen je u hidratiziranim uzorcima u temperaturnom području od 105 – 850 °C prema jednadžbi **15**:

$$w(kemijsk\underline{i} vezana_voda) = \frac{\Delta m_{50-850^{\circ}C} - \Delta m_{50-105^{\circ}C} - \Delta m_{400-550^{\circ}C} - \Delta m_{650-800^{\circ}C}}{m_{uzorka}}$$
(15)

gdje je:

 Δm_{50-850} °_C – ukupni gubitak mase u temperaturnom području od 50 – 850 °C,

 Δm_{50-105} °_C – gubitak mase slobodne vode u temperaturnom području od 50 – 105 °C,

- $\Delta m_{400-550}$ °_C gubitak mase uslijed razlaganja Ca(OH)₂ u temperaturnom području od 400 550 °C,
- $\Delta m_{650-800}$ °_C gubitak mase uslijed razlaganja kalcijeva karbonata u temperaturnom području od 650 800 °C i

muzorka – masa uzorka sušenog pri 105 °C.

3.3.7. FTIR

Infracrveni spektri snimljeni su na Spectrum One uređaju, Perkin Elmer. Uzorci su pripremljeni u obliku pastila, a snimanja su napravljena u valnom području od 4000 do 400 cm⁻¹. Za pripremu pastila upotrebljeno je oko 200 mg spektrografski čistog KBr (proizvođač Sigma-Aldrich, Njemačka) pomiješanog s oko 30 mg hidratiziranog uzorka. Nakon homogeniranja smjese u ahatnom tarioniku, uzorak je prenesen u kalup i tlačen u hidrauličnoj presi pri tlaku od 490,33 MPa. Obrada dobivenih rezultata izvršena je u programu Spectrum.

3.3.8. Određivanje tlačne i savojne čvrstoće

Nakon određenog perioda hidratacije (njegovanja) u vodi (1, 2, 7 i 28 dana), uzorci su podvrgnuti određivanju tlačne i savojne čvrstoće prema normi HRN EN 196-1. Ispitivanja su provedena na Toni Technik sustavu hidrauličnih preša (**slika 29**).

Slika 29. Sustav hidrauličnih preša za određivanje tlačne i savojne čvrstoće

4. REZULTATI

4.1. Rezultati određivanja vremena vezanja cementa i cementnih kompozita metodom po Vicatu

Na slikama **29** – **41** prikazani su rezultati mjerenja početka i kraja vezanja uzoraka portland cementa uz dodatak industrijskog mulja, zasićenog i prirodnog zeolita, PbO, PbCrO₄ i (NH₄)₂Cr₂O₇ (ABK), određeni metodom po Vicatu. Uzorci su pripremljeni pri V/K = 0,5 zbog mogućnosti uspoređivanja s rezultatima elektrokemijskog određivanja vremena vezanja elektrodnim parom Pb – Cu te rezultatima određivanja spec. provodnosti.

Slika 29. Ovisnost vremena vezanja cementnih uzoraka o udjelu mulja

Slika 30. Ovisnost vremena vezanja cementnih uzoraka o udjelu zasićenog zeolita

Slika 31. Ovisnost vremena vezanja cementnih uzoraka o udjelu zeolita

Slika 32. Ovisnost vremena vezanja cementnih uzoraka o udjelu zasićenog zeolita (uz 20 mas. % mulja u smjesi)

Slika 33. Ovisnost vremena vezanja cementnih uzoraka o udjelu zasićenog zeolita (uz 30 mas. % mulja u smjesi)

Slika 34. Ovisnost vremena vezanja cementnih uzoraka o udjelu zasićenog zeolita (uz 40 mas. % mulja u smjesi)

Slika 35. Ovisnost vremena vezanja cementnih uzoraka o udjelu zasićenog zeolita (uz 50 mas. % mulja u smjesi)

Slika 36. Ovisnost vremena vezanja cementnih uzoraka o udjelu PbO

Slika 37. Ovisnost vremena vezanja cementnih uzoraka o udjelu PbO (uz 20 mas. % zeolita)

Slika 38. Ovisnost vremena vezanja cementnih uzoraka o udjelu PbCrO₄

Slika 39. Ovisnost vremena vezanja cementnih uzoraka o udjelu PbCrO₄ (uz 20 mas. % zeolita)

Slika 40. Ovisnost vremena vezanja cementnih uzoraka o udjelu ABK

Slika 41. Ovisnost vremena vezanja cementnih uzoraka o udjelu ABK (uz 20 mas. % zeolita)

4.2. Rezultati određivanja vremena vezanja cementa i cementnih kompozita elektrokemijskom metodom

Primjenom elektrokemijske metode određen je početak i kraj vezanja uzoraka cementa uz dodatak mulja, zasićenog i prirodnog zeolita, PbO, PbCrO₄ i $(NH_4)_2Cr_2O_7$ (ABK), što se grafički može vidjeti na slikama **42** – **54**. Uzorci su pripremljeni pri V/K = 0,5.

Slika 42. Ovisnost EMS o vremenu hidratacije uzoraka cementa (C) uz dodatak 0 – 20 mas. % mulja (M)

Slika 43. Ovisnost EMS o vremenu hidratacije uzoraka cementa uz dodatak 0 – 30 mas. % zasićenog zeolita (ZZ)

Slika 44. Ovisnost EMS o vremenu hidratacije uzoraka cementa uz dodatak 0 - 30 mas. % zeolita (Z)

Slika 45. Ovisnost EMS o vremenu hidratacije uzoraka cementa uz dodatak 0 – 30 mas. % zas. zeolita (uz dodatak 20 mas. % mulja u smjesi)

Slika 46. Ovisnost EMS o vremenu hidratacije uzoraka cementa uz dodatak 0 – 30 mas. % zas. zeolita (uz dodatak 30 mas. % mulja u smjesi)

Slika 47. Ovisnost EMS o vremenu hidratacije uzoraka cementa uz dodatak 0 – 30 mas. % zas. zeolita (uz dodatak 40 mas. % mulja u smjesi)

Slika 48. Ovisnost EMS o vremenu hidratacije uzoraka cementa uz dodatak 0 – 30 mas. % zas. zeolita (uz dodatak 50 mas. % mulja u smjesi)

Slika 49. Ovisnost EMS o vremenu hidratacije uzoraka cementa uz dodatak 0,0 – 0,7 mas. % PbO

Slika 50. Ovisnost EMS o vremenu hidratacije uzoraka cementa uz dodatak 0,0-0,7mas. % PbO (uz dodatak 20 mas. % zeolita)

Slika 51. Ovisnost EMS o vremenu hidratacije uzoraka cementa uz dodatak 0,0 - 3,0mas. % PbCrO₄

Slika 52. Ovisnost EMS o vremenu hidratacije uzoraka cementa uz dodatak 0,0 - 3,0mas. % PbCrO₄ (uz dodatak 20 mas. % zeolita)

Slika 53. Ovisnost EMS o vremenu hidratacije uzoraka cementa uz dodatak 0,0 – 5,0 mas. % amonijeva bikromata

Slika 54. Ovisnost EMS o vremenu hidratacije uzoraka cementa uz dodatak 0,0 – 5,0 mas. % amonijeva bikromata (uz dodatak 20 mas. % zeolita)

4.3. Rezultati diferencijalne mikrokalorimetrije

Primjenom diferencijalne mikrokalorimetrije dobiveni su rezultati ovisnosti termonapona o vremenu hidratacije za uzorke portland cementa uz različite dodatke mulja, zasićenog i prirodnog zeolita, PbO, PbCrO₄ i $(NH_4)_2Cr_2O_7$. Rezultati su prikazani u obliku DMK krivulja na slikama 55 – 67.

Uz primjenu programa "Hidratacija cementa" izračunate su vrijednosti topline hidratacije, brzine oslobađanja topline te stupnja hidratacije.

Dobiveni rezultati prikazani su u tablicama 9 – 71.

Slika 55. Ovisnost termonapona o vremenu hidratacije uzoraka cementa uz različite udjele industrijskog mulja

Slika 56. Ovisnost termonapona o vremenu hidratacije uzoraka cementa uz različite udjele zasićenog zeolita

Slika 57. Ovisnost termonapona o vremenu hidratacije uzoraka cementa uz različite udjele zeolita

Slika 58. Ovisnost termonapona o vremenu hidratacije uzoraka cementa uz različite udjele zas. zeolita (uz 20 mas. % mulja u smjesi)

Slika 59. Ovisnost termonapona o vremenu hidratacije uzoraka cementa uz različite udjele zas. zeolita (uz 30 mas. % mulja u smjesi)

Slika 60. Ovisnost termonapona o vremenu hidratacije uzoraka cementa uz različite udjele zas. zeolita (uz 40 mas. % mulja u smjesi)

Slika 61. Ovisnost termonapona o vremenu hidratacije uzoraka cementa uz različite udjele zas. zeolita (uz 50 mas. % mulja u smjesi)

Slika 62. Ovisnost termonapona o vremenu hidratacije uzoraka cementa uz različite udjele olovo(II) oksida

Slika 63. Ovisnost termonapona o vremenu hidratacije uzoraka cementa uz različite udjele olovo(II) oksida (uz 20 mas. % zeolita u uzorku)

Slika 64. Ovisnost termonapona o vremenu hidratacije uzoraka cementa uz različite udjele olovo(II) kromata

Slika 65. Ovisnost termonapona o vremenu hidratacije uzoraka cementa uz različite udjele olovo(II) kromata (uz 20 mas. % zeolita u uzorku)

Slika 66. Ovisnost termonapona o vremenu hidratacije uzoraka cementa uz različite udjele amonijeva bikromata

Slika 67. Ovisnost termonapona o vremenu hidratacije uzoraka cementa uz različite udjele amonijeva bikromata (uz 20 mas. % zeolita u uzorku)

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	а
0	0	0,0000	0.0000	0,0000
1	65	3,8799	3,8799	0,0139
2	36	5,2341	1,3542	0.0187
3	43	7.3607	2.1266	0.0263
4	69	10.9537	3.5930	0.0391
5	98	15.9599	5.0062	0.0570
6	130	22,5216	6.5617	0.0804
7	156	30,2441	7,7225	0,1080
8	178	38,9619	8.7178	0.1391
9	188	48,0077	9,0458	0,1715
10	191	57,1103	9,1026	0,2040
11	188	65,9971	8.8868	0.2357
12	181	74,5028	8,5057	0.2661
13	171	82,4971	7,9943	0,2946
14	162	90.0765	7.5794	0.3217
15	151	97,1093	7,0328	0,3468
16	141	103,6796	6,5704	0,3703
17	131	109.7753	6.0957	0.3921
18	120	115,3367	5,5614	0,4119
19	111	120,4953	5,1586	0,4303
20	103	125,2865	4,7911	0,4475
21	96	129,7576	4,4711	0,4634
22	89	133.8964	4.1389	0.4782
23	82	137,7030	3,8066	0,4918
24	78	141,3564	3,6534	0,5048
25	72	144,7006	3,3442	0,5168
26	68	147,8793	3,1787	0,5281
27	63	150,8085	2,9292	0,5386
28	58	153,5004	2,6919	0,5482
29	56	156,1340	2,6336	0,5576
30	53	158,6130	2,4790	0,5665
31	50	160,9496	2,3366	0,5748
32	47	163,1437	2,1942	0,5827
33	45	165,2552	2,1115	0,5902
34	42	167,2121	1,9569	0,5972
35	40	169,0863	1,8742	0,6039
36	38	170,8655	1,7792	0,6102
37	38	172,6692	1,8037	0,6167
38	35	174,2938	1,6246	0,6225
39	34	175,8954	1,6016	0,6282
40	33	177,4495	1,5541	0,6337
41	33	179,0159	1,5664	0,6393
42	31	180,4629	1,4470	0,6445
43	30	181,8746	1,4118	0,6496
44	29	183,2389	1,3643	0,6544
45	28	184,5557	1,3168	0,6591
46	27	185,8250	1,2693	0,6637
47	26	187,0469	1,2219	0,6680
48	26	188.2810	1.2341	0.6724

Tablica 9. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak CEM I

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	59	3,5218	3,5218	0,0126
2	30	4,5912	1,0694	0,0164
3	23	5,5973	1,0061	0,0200
4	28	6,9875	1,3902	0,0250
5	41	9,0925	2,1050	0,0325
6	60	12,1727	3,0802	0,0435
7	82	16,3339	4,1611	0,0583
8	107	21,7183	5,3845	0,0776
9	130	28,1700	6,4517	0,1006
10	147	35,3553	7,1853	0,1263
11	160	43,1087	7,7534	0,1540
12	164	50,9419	7,8332	0,1819
13	165	58,7859	7,8440	0,2099
14	163	66,4984	7,7124	0,2375
15	156	73,8174	7,3190	0,2636
16	149	80,8042	6,9868	0,2886
17	141	87,3990	6,5948	0,3121
18	133	93,6141	6,2151	0,3343
19	125	99,4494	5,8354	0,3552
20	117	104,9051	5,4557	0,3747
21	109	109,9810	5,0759	0,3928
22	102	114,7369	4,7559	0,4098
23	96	119,2202	4,4833	0,4258
24	88	123,2994	4,0792	0,4404
25	84	127,2376	3,9382	0,4544
26	77	130,8068	3,5692	0,4672
27	73	134,2229	3,4161	0,4794
28	69	137,4491	3,2262	0,4909
29	64	140,4258	2,9766	0,5015
30	61	143,2845	2,8587	0,5117
31	57	145,9411	2,6566	0,5212
32	54	148,4676	2,5265	0,5302
33	52	150,9113	2,4437	0,5390
34	48	153,1408	2,2294	0,5469
35	45	155,2400	2,0993	0,5544
36	44	157,3163	2,0763	0,5618
37	40	159,1660	1,8497	0,5685
38	39	161,0049	1,8389	0,5750
39	36	162,6770	1,6721	0,5810
40	36	164,3857	1,7087	0,5871
41	33	165,9154	1,5297	0,5926
42	32	167,4221	1,5067	0,5979
43	31	168,8813	1,4592	0,6031
44	30	170,2931	1,4117	0,6082
45	29	171,6573	1,3643	0,6131
46	28	172,9741	1,3168	0,6178
47	27	174,2435	1,2693	0,6223
48	25	175,4056	1,1622	0,6264

Tablica 10. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C2M

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	а
0	0	0,0000	0,0000	0,0000
1	40	2,3877	2,3877	0,0085
2	15	2,7940	0,4063	0,0100
3	6	2,9687	0,1748	0,0106
4	4	3,1342	0,1654	0,0112
5	4	3,3240	0,1899	0,0119
6	7	3,6930	0,3689	0,0132
7	12	4,3237	0,6307	0,0154
8	17	5,1917	0,8680	0,0185
9	24	6,4165	1,2248	0,0229
10	33	8,0929	1,6764	0,0289
11	44	10,3158	2,2230	0,0368
12	57	13,1803	2,8645	0,0471
13	70	16,6618	3,4815	0,0595
14	84	20,8201	4,1583	0,0744
15	97	25,5832	4,7631	0,0914
16	110	30,9633	5,3801	0,1106
17	120	36,7814	5,8181	0,1314
18	128	42,9548	6,1734	0,1534
19	133	49,3288	6,3740	0,1762
20	136	55,8208	6,4920	0,1994
21	136	62,2761	6,4553	0,2224
22	134	68,6120	6,3359	0,2450
23	131	74,7933	6,1813	0,2671
24	127	80,7725	5,9792	0,2885
25	122	86,5022	5,7297	0,3089
26	117	91,9945	5,4923	0,3286
27	110	97,1301	5,1356	0,3469
28	104	101,9932	4,8630	0,3643
29	98	106,5714	4,5783	0,3806
30	92	110,8649	4,2935	0,3959
31	85	114,8139	3,9490	0,4100
32	79	118,4903	3,6764	0,4232
33	73	121,8819	3,3916	0,4353
34	68	125,0484	3,1665	0,4466
35	62	127,9179	2,8695	0,4568
36	59	130,6817	2,7638	0,4667
37	54	133,1837	2,5020	0,4757
38	51	135,5678	2,3841	0,4842
39	47	137,7497	2,1820	0,4920
40	44	139,8015	2,0518	0,4993
41	42	141,7706	1,9691	0,5063
42	39	143,5851	1,8145	0,5128
43	36	145,2572	1,6721	0,5188
44	34	146,8466	1,5894	0,5245
45	32	148,3410	1,4944	0,5298
46	30	149,7405	1,3995	0,5348
47	29	151,1048	1,3643	0,5397
48	27	152,3619	1,2571	0.5441

Tablica 11. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C5M

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	81	4,8350	4,8350	0,0173
2	35	5,9339	1,0989	0,0212
3	18	6,5804	0,6465	0,0235
4	12	7,0767	0,4962	0,0253
5	10	7,5269	0,4502	0,0269
6	10	8,0015	0,4747	0,0286
7	10	8,4762	0,4747	0,0303
8	12	9,0702	0,5940	0,0324
9	12	9,6398	0,5696	0,0344
10	13	10,2691	0,6293	0.0367
11	14	10.9458	0.6767	0.0391
12	15	11,6700	0,7242	0.0417
13	16	12,4417	0,7717	0,0444
14	16	13.2011	0.7594	0.0471
15	17	14.0203	0.8191	0.0501
16	20	15,0063	0,9860	0,0536
17	20	15.9556	0.9493	0.0570
18	23	17.0840	1.1284	0.0610
19	26	18.3547	1.2708	0.0656
20	28	19.7082	1.3535	0.0704
21	31	21.2163	1.5081	0.0758
22	34	22,8668	1.6505	0.0817
23	37	24.6597	1.7929	0.0881
24	42	26.7144	2.0547	0.0954
25	46	28,9467	2.2323	0.1034
26	49	31.3092	2,3625	0.1118
27	54	33,9335	2,6243	0,1212
28	56	36.6160	2.6825	0.1308
29	61	39,5725	2,9565	0,1413
30	63	42,5873	3,0148	0,1521
31	66	45,7567	3,1694	0,1634
32	68	49,0088	3,2521	0,1750
33	70	52,3558	3,3470	0,1870
34	72	55,7978	3,4420	0,1993
35	72	59,2153	3,4175	0,2115
36	73	62,6925	3,4772	0,2239
37	73	66,1575	3,4650	0,2363
38	73	69,6225	3,4650	0,2487
39	72	73,0277	3,4053	0,2608
40	72	76,4452	3,4175	0,2730
41	71	79,8031	3,3578	0,2850
42	69	83,0537	3,2507	0,2966
43	68	86,2692	3,2154	0,3081
44	67	89,4371	3,1680	0,3194
45	65	92,4979	3,0608	0,3303
46	64	95,5235	3,0256	0,3412
47	63	98,5016	2,9781	0,3518
48	61	101,3725	2,8709	0,3620

Tablica 12. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C10M

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	а
0	0	0,0000	0,0000	0,0000
1	104	6,2079	6,2079	0,0222
2	41	7,3838	1,1758	0,0264
3	18	7,9569	0,5732	0,0284
4	11	8,3935	0,4365	0,0300
5	7	8,6768	0,2834	0,0310
6	6	8,9494	0,2726	0,0320
7	4	9,1148	0,1654	0,0326
8	3	9,2450	0,1302	0,0330
9	3	9,3874	0,1424	0,0335
10	3	9,5298	0,1424	0,0340
11	3	9,6722	0,1424	0,0345
12	2	9,7549	0,0827	0,0348
13	2	9,8498	0,0949	0,0352
14	1	9,8850	0,0352	0,0353
15	1	9,9325	0,0475	0,0355
16	1	9,9800	0,0475	0,0356
17	0	9,9677	0,0122	0,0356
18	0	9,9677	0,0000	0,0356
19	1	10,0274	0,0597	0,0358
20	1	10,0749	0,0475	0,0360
21	1	10,1224	0,0475	0,0362
22	1	10,1698	0,0475	0,0363
23	1	10,2173	0,0475	0,0365
24	0	10,2051	0,0122	0,0364
25	2	10,3245	0,1194	0,0369
26	2	10,4194	0,0949	0,0372
27	2	10,5143	0,0949	0,0376
28	3	10,6689	0,1546	0,0381
29	3	10,8113	0,1424	0,0386
30	3	10,9537	0,1424	0,0391
31	3	11,0961	0,1424	0,0396
32	3	11,2385	0,1424	0,0401
33	3	11,3809	0,1424	0,0406
34	4	11,5830	0,2021	0,0414
35	6	11,8922	0,3092	0,0425
36	7	12,2367	0,3445	0,0437
37	7	12,5690	0,3323	0,0449
38	7	12,9012	0,3323	0,0461
39	8	13,2932	0,3920	0,0475
40	9	13,7326	0,4394	0,0490
41	11	14,2792	0,5466	0,0510
42	11	14,8013	0,5221	0,0529
43	13	15,4428	0,6415	0,0552
44	14	16,1195	0,6767	0,0576
45	15	16,8438	0,7242	0,0602
46	15	17,5557	0,7120	0,0627
47	17	18,3871	0,8314	0,0657
48	19	19.3134	0.9263	0.0690

Tablica 13. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C20M

Vriieme	Termonapon	Toplina hidr.	Brzina hidr.	Stupani hidr.
h	μV	I/g	.I/gh	a
0	μ. 0	0.0000	0,0000	0,0000
1	65	3 8799	3 8799	0.0139
2	37	5 2938	1 4139	0.0189
3	38	7 1097	1,4159	0.0254
1	54	9.8685	2 7587	0,0254
5	74	13 6255	3 7570	0,0352
6	97	18 5108	4 8853	0,0461
7	117	24 3088	5 7980	0,0001
8	136	30,9964	6 6876	0,1107
9	150	38 2874	7 2910	0.1367
10	160	46 0041	7,2910	0.1643
10	163	53 7776	7,7107	0,1045
12	162	61 4548	7,7735	0,1921
12	158	68 9054	7,0772	0.2461
14	150	75 9274	7,4300	0,2401
14	130	82 6891	6 7617	0,2712
15	144	89.0466	6 3575	0,2933
10	130	05 0244	5 0778	0,3100
17	128	95,0244	5,9778	0,3394
10	122	106,7418	5 3133	0,3398
20	114	110,0331	4 0225	0,3788
20	100	115,5618	4,9333	0,3904
21	100	110,0005	4,0732	0,4131
22	93	124.0466	4,5267	0,4283
23	87	124,0400	3 8310	0,4430
24	78	127,8770	3,6534	0,4507
25	78	131,3310	3,0334	0,4098
20	60	134,9349	3,4039	0,4819
21	66	1/1 2571	3,2202	0,4934
20	62	141,2371	2 8940	0,5149
29	58	144,1311	2,8940	0,5148
31	56	140,8332	2,7041	0,5245
31	53	149,4000	2,0330	0,5333
32	50	154 3044	2,4790	0,5427
33	17	156 /096	2,5500	0,5580
34	47	158 6101	2,1942	0,5565
35	43	160 6266	2,1113	0,5005
30	т <u>ј</u> //1	162 5/83	1 9217	0,5757
38	30	16/ 3750	1,9217	0,5805
30	39	166 1664	1,0207	0,5071
40	36	167 8507	1,7914	0,5955
40	30	160 //01	1,0043	0,3773
41	32	170 00/2	1,5074	0,6107
	33	172 5000	1,5541	0.6161
43	31	173 0601	1,5007	0.6213
/5	28	175 2525	1,4392	0,6215
-+J //6	20	176 5815	1 3200	0,0233
/7	20	177 0105	1 3290	0.635/
18	26	179 1202	1 2007	0,6307
40	20	1/7,1202	1,207/	0,0377

Tablica 14. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C5ZZ

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupani hidr.
h	μV	I/g	I/ah	a
<i>n</i>	μ <i>ν</i>	0,0000	0,0000	<i>u</i>
1	40	2 3877	2 3877	0,000
2	31	3 7/91	1 3614	0,0085
2	30	5,7491	1,3014	0,0134
3	59	3,0980 8 7/30	3.0450	0,0204
4	33 77	12 6170	3,0430	0,0312
5	06	12,0179	3,8749	0,0431
7	90	17,4009	4,7890	0,0022
0	114	25,0380	5,0311	0,0823
0	127	29,2230	6,1870	0,1044
9	130	33,9098	6.0691	0,1282
10	145	42,8778	6.0422	0,1331
11	140	49,8200	6,9422	0,1779
12	140	50,7500 62,5008	6,9500	0,2027
13	140	60.8706	6 2607	0.2405
14	130	75 0677	6,0072	0,2493
15	130	73,9077 81,7204	0,0972 5,7527	0,2715
10	123	01,/204	5,1521	0,2919
1/	115	87,0811	5,3007	0,3110
18	107	92,0621	4,9810	0,3288
19	100	96,7231	4,0010	0,3434
20	95	101,1711	4,4481	0,3613
21	89	105,3222	4,1511	0,3762
22	83	109,1885	3,8663	0,3900
23	79	112,8894	3,7009	0,4032
24	/5	116,4004	3,5110	0,4157
25	/1	119,7215	3,3211	0,4276
26	67	122,8528	3,1313	0,4388
27	65	125,9136	3,0608	0,4497
28	<u> </u>	128,7004	2,7808	0,4596
29	58	131,4289	2,7285	0,4694
30	55	134,0028	2,5739	0,4786
22	51	130,3747	2,3718	0,4871
32	49	138,6760	2,3014	0,4953
33	44	140,7034	2,0274	0,5025
54 25	43	142,7322	2,0288	0,5098
35	40	144,5941	1,8619	0,5164
30	38	146,3/33	1,7792	0,5228
3/	35	14/,9980	1,6246	0,5286
<u> </u>	34	149,5996	1,0010	0,5343
<u> </u>	<u> </u>	151,153/	1,5541	0,5398
40	31	152,6007	1,4470	0,5450
41	31	154,0721	1,4/14	0,5503
42	29	155,4241	1,3521	0,5551
43	28	156,/410	1,3168	0,5598
44	27	158,0103	1,2093	0,5043
45	20	159,2522	1,2219	0,508/
40	24	160,3469	1,114/	0,5727
4/	23	101,4264	1,0/95	0,5765
48	23	162,5181	1,0917	0,5804

Tablica 15. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C10ZZ

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	а
0	0	0,0000	0,0000	0,0000
1	72	4,2978	4,2978	0,0153
2	43	5,9842	1,6865	0,0214
3	41	7,9059	1,9216	0,0282
4	56	10,7473	2,8415	0,0384
5	75	14,5395	3,7922	0,0519
6	92	19,1142	4,5747	0,0683
7	109	24,4958	5,3816	0,0875
8	121	30,3858	5,8900	0,1085
9	131	36,7260	6,3402	0,1312
10	136	43,2425	6,5164	0,1544
11	136	49,6978	6,4553	0,1775
12	134	56,0337	6,3359	0,2001
13	130	62,1553	6,1216	0,2220
14	123	67,9079	5,7527	0,2425
15	115	73,2687	5,3607	0,2617
16	108	78,3093	5,0407	0,2797
17	102	83,0775	4,7681	0,2967
18	96	87,5608	4,4833	0,3127
19	89	91,6996	4,1388	0,3275
20	84	95,6256	3,9260	0,3415
21	79	99,3142	3,6886	0,3547
22	74	102,7656	3,4513	0,3670
23	69	105,9795	3,2140	0,3785
24	64	108,9562	2,9767	0,3891
25	60	111,7552	2,7990	0,3991
26	56	114,3644	2,6092	0,4084
27	54	116,9031	2,5387	0,4175
28	51	119,2871	2,3841	0,4260
29	50	121,6482	2,3610	0,4345
30	48	123,9021	2,2539	0,4425
31	44	125,9416	2,0396	0,4498
32	43	127,9704	2,0288	0,4570
33	40	129,8324	1,8619	0,4637
34	38	131,6116	1,7792	0,4700
35	36	133,2959	1,6843	0,4761
36	34	134,8853	1,5894	0,4817
37	32	136,3797	1,4944	0,4871
38	31	137,8389	1,4592	0,4923
39	30	139,2506	1,4117	0,4973
40	28	140,5552	1,3046	0,5020
41	27	141,8246	1,2693	0,5065
42	25	142,9868	1,1622	0,5107
43	24	144,1137	1,1269	0,5147
44	23	145,1932	1,0795	0,5185
45	21	146,1655	0,9723	0,5220
46	21	147,1623	0,9968	0,5256
47	20	148,0994	0,9371	0,5289
48	18	148,9293	0,8299	0,5319

Tablica 16. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C20ZZ

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0.0000	0.0000	0.0000
1	84	5,0141	5,0141	0,0179
2	49	6,9120	1,8979	0,0247
3	44	8,9393	2,0274	0,0319
4	57	11,8038	2,8645	0,0422
5	74	15,5241	3,7203	0,0554
6	91	20,0513	4,5272	0,0716
7	101	24,9675	4,9163	0,0892
8	111	30,3585	5,3909	0,1084
9	117	35,9853	5,6268	0,1285
10	119	41,6581	5,6728	0,1488
11	119	47,3065	5,6484	0,1690
12	117	52,8355	5,5290	0,1887
13	111	58,0308	5,1953	0,2073
14	106	63,0010	4,9702	0,2250
15	99	67,6145	4,6135	0,2415
16	93	71,9554	4,3409	0,2570
17	87	76,0116	4,0561	0,2715
18	81	79,7829	3,7713	0,2849
19	76	83,3292	3,5462	0,2976
20	71	86,6381	3,3089	0,3094
21	67	89,7694	3,1313	0,3206
22	63	92,7108	2,9414	0,3311
23	59	95,4623	2,7516	0,3409
24	55	98,0240	2,5617	0,3501
25	52	100,4556	2,4315	0,3588
26	49	102,7447	2,2891	0,3669
27	47	104,9511	2,2064	0,3748
28	45	107,0626	2,1115	0,3824
29	43	109,0792	2,0166	0,3896
30	40	110,9411	1,8619	0,3962
31	38	112,7203	1,7792	0,4026
32	36	114,4047	1,6843	0,4086
33	34	115,9940	1,5894	0,4143
34	31	117,4288	1,4348	0,4194
35	31	118,9002	1,4714	0,4246
36	28	120,1926	1,2924	0,4293
37	27	121,4619	1,2693	0,4338
38	26	122,6838	1,2219	0,4382
39	25	123,8582	1,1744	0,4424
40	23	124,9254	1,0673	0,4462
41	23	126,0171	1,0917	0,4501
42	21	126,9895	0,9723	0,4535
43	20	127,9266	0,9371	0,4569
44	19	128,8162	0,8896	0,4601
45	19	129,7180	0,9018	0,4633
46	18	130,5602	0,8421	0,4663
47	17	131,3548	0,7947	0,4691
48	15	132,0424	0,6875	0,4716

Tablica 17. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C30ZZ

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	73	4,3575	4,3575	0,0156
2	71	7,7031	3,3456	0,0275
3	71	11,0731	3,3700	0,0395
4	84	15,2191	4,1460	0,0544
5	105	20,4598	5,2406	0,0731
6	126	26,6972	6,2374	0,0953
7	146	33,8716	7,1745	0,1210
8	163	41,8163	7,9447	0,1493
9	173	50,1501	8,3338	0,1791
10	178	58,6601	8,5100	0,2095
11	178	67,1089	8,4488	0,2397
12	175	75,3787	8,2698	0,2692
13	168	83,2673	7,8886	0,2974
14	160	90,7640	7,4967	0,3242
15	151	97,8212	7,0572	0,3494
16	143	104,5110	6,6898	0,3733
17	134	110,7613	6,2503	0,3956
18	127	116,7038	5,9425	0,4168
19	119	122,2544	5,5506	0,4366
20	111	127,4253	5,1709	0,4551
21	104	132,2761	4,8508	0,4724
22	98	136,8544	4,5783	0,4888
23	91	141,0881	4,2338	0,5039
24	86	145,1090	4,0209	0,5182
25	81	148,8926	3,7836	0,5318
26	77	152,4985	3,6059	0,5446
27	74	155,9743	3,4758	0,5571
28	71	159,3077	3,3334	0,5690
29	67	162,4390	3,1313	0,5801
30	63	165,3804	2,9414	0,5906
31	59	168,1319	2,7516	0,6005
32	55	170,6936	2,5617	0,6096
33	52	173,1251	2,4315	0,6183
34	48	175,3546	2,2294	0,6263
35	46	177,5135	2,1590	0,6340
36	43	179,5179	2,0043	0,6411
37	42	181,4992	1,9813	0,6482
38	40	183,3734	1,8742	0,6549
39	38	185,1526	1,7792	0,6613
40	36	186,8369	1,6843	0,6673
41	35	188,4860	1,6490	0,6732
42	34	190,0876	1,6016	0,6789
43	32	191,5820	1,4944	0,6842
44	31	193,0412	1,4592	0,6894
45	29	194,3933	1,3520	0,6943
46	28	195,7101	1,3168	0,6990
47	27	196,9794	1,2693	0,7035
48	26	198,2013	1,2219	0,7079

Tablica 18. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C5Z

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	54	3,2233	3,2233	0,0115
2	40	4,9508	1,7275	0,0177
3	42	6,9688	2,0180	0,0249
4	49	9,3802	2,4114	0,0335
5	81	13,6161	4,2359	0,0486
6	102	18,7143	5,0982	0,0668
7	121	24,6899	5,9756	0,0882
8	137	31,3883	6,6984	0,1121
9	149	38,6074	7,2191	0,1379
10	157	46,1573	7,5499	0,1648
11	160	53,7884	7,6312	0,1921
12	159	61,3232	7,5348	0,2190
13	154	68,5717	7,2486	0,2449
14	148	75,5233	6,9515	0,2697
15	141	82,1303	6,6070	0,2933
16	134	88,4051	6,2748	0,3157
17	126	94,2879	5,8828	0,3367
18	118	99,7910	5,5031	0,3564
19	110	104,9144	5,1234	0,3747
20	104	109,7775	4,8631	0,3921
21	98	114,3557	4,5783	0,4084
22	94	118,7686	4,4128	0,4242
23	87	122,8125	4,0439	0,4386
24	82	126,6435	3,8310	0,4523
25	78	130,2969	3,6534	0,4653
26	74	133,7605	3,4635	0,4777
27	70	137,0342	3,2737	0,4894
28	66	140,1180	3,0838	0,5004
29	62	143,0119	2,8940	0,5108
30	59	145,7757	2,7638	0,5206
31	56	148,3971	2,6214	0,5300
32	54	150,9358	2,5387	0,5391
33	51	153,3198	2,3841	0,5476
34	48	155,5615	2,2417	0,5556
35	45	157,6608	2,0993	0,5631
36	43	159,6773	2,0166	0,5703
37	41	161,5990	1,9216	0,5771
38	40	163,4853	1,8864	0,5839
39	38	165,2646	1,7793	0,5902
40	36	166,9489	1,6843	0,5962
41	35	168,5980	1,6491	0,6021
42	34	170,1996	1,6016	0,6079
43	32	171,6940	1,4944	0,6132
44	32	173,2129	1,5189	0,6186
45	30	174,6124	1,3995	0,6236
46	29	1/5,9/6/	1,3643	0,6285
47	27	177,2338	1,25/1	0,6330
48	26	178.4557	1.2219	0.6373

Tablica 19. Vrijednosti topline, brz	zine oslobađanja topline i relativnog stupnja
hidratacije u funkciji vre	emena hidratacije za uzorak C10Z

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0.0000
1	47	2,8055	2,8055	0,0100
2	36	4,3798	1,5743	0,0156
3	41	6,3870	2,0072	0,0228
4	56	9,2284	2,8415	0,0330
5	76	13,0803	3,8519	0,0467
6	93	17,7025	4,6221	0,0632
7	108	23,0121	5,3097	0,0822
8	119	28,7950	5,7829	0,1028
9	128	34,9806	6,1856	0,1249
10	131	41,2352	6,2547	0,1473
11	133	47,5726	6,3374	0,1699
12	131	53,7661	6,1935	0,1920
13	128	59,8050	6,0389	0,2136
14	123	65,5821	5,7771	0,2342
15	117	71,0622	5,4801	0,2538
16	109	76,1382	5,0759	0,2719
17	103	80,9537	4,8156	0,2891
18	96	85,4248	4,4711	0,3051
19	89	89,5637	4,1388	0,3199
20	84	93,4897	3,9260	0,3339
21	79	97,1783	3,6886	0,3471
22	74	100,6296	3,4513	0,3594
23	69	103,8436	3,2140	0,3709
24	65	106,8799	3,0363	0,3817
25	61	109,7264	2,8465	0,3919
26	57	112,3831	2,6566	0,4014
27	55	114,9692	2,5861	0,4106
28	51	117,3410	2,3718	0,4191
29	49	119,6424	2,3014	0,4273
30	45	121,7294	2,0870	0,4347
31	43	123,7460	2,0166	0,4419
32	40	125,6079	1,8619	0,4486
33	38	127,3872	1,7792	0,4550
34	36	129,0715	1,6843	0,4610
35	34	130,6608	1,5894	0,4666
36	32	132,1553	1,4944	0,4720
37	29	133,4951	1,3398	0,4768
38	29	134,8716	1,3765	0,4817
39	29	136,2481	1,3765	0,4866
40	26	137,4455	1,1974	0,4909
41	25	138,6199	1,1744	0,4951
42	24	139,7469	1,1269	0,4991
43	22	140,7667	1,0198	0,5027
44	21	141,7512	0,9846	0,5063
45	19	142,6286	0,8774	0,5094
46	18	143,4708	0,8422	0,5124
47	17	144,2654	0,7947	0,5152
48	16	145,0127	0,7472	0.5179

Tablica 20. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C20Z

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0.0000	0.0000	0.0000
1	82	4,8947	4,8947	0.0175
2	61	7,5333	2,6386	0.0269
3	65	10,6675	3,1342	0.0381
4	80	14,6481	3,9806	0,0523
5	93	19,2213	4,5732	0.0686
6	102	24,1729	4,9515	0,0863
7	109	29,4322	5,2593	0,1051
8	116	35,0237	5,5916	0,1251
9	121	40,8282	5,8044	0,1458
10	124	46,7506	5,9224	0,1670
11	123	52,5766	5,8260	0,1878
12	121	58,2955	5,7189	0,2082
13	116	63,7403	5,4449	0,2276
14	110	68,8882	5,1478	0,2460
15	105	73,8109	4,9227	0,2636
16	99	78,4366	4,6257	0,2801
17	91	82,6582	4,2216	0,2952
18	85	86,6194	3,9612	0,3094
19	80	90,3555	3,7361	0,3227
20	75	93,8543	3,4988	0,3352
21	70	97,1157	3,2615	0,3468
22	65	100,1398	3,0241	0,3576
23	62	103,0460	2,9062	0,3680
24	59	105,8098	2,7638	0,3779
25	55	108,3715	2,5617	0,3870
26	52	110,8030	2,4315	0,3957
27	49	113,0922	2,2891	0,4039
28	47	115,2986	2,2064	0,4118
29	45	117,4101	2,1115	0,4193
30	42	119,3669	1,9569	0,4263
31	41	121,3008	1,9339	0,4332
32	38	123,0678	1,7670	0,4395
33	37	124,8118	1,7440	0,4458
34	34	126,3890	1,5772	0,4514
35	33	127,9431	1,5541	0,4569
36	31	129,3901	1,4470	0,4621
37	30	130,8018	1,4117	0,4671
38	29	132,1661	1,3643	0,4720
39	27	133,4232	1,2571	0,4765
40	25	134,5854	1,1622	0,4807
41	24	135,7123	1,1269	0,4847
42	24	136,8515	1,1392	0,4888
43	22	137,8713	1,0198	0,4924
44	21	138,8558	0,9846	0,4959
45	21	139,8526	0,9968	0,4995
46	21	140,8494	0,9968	0,5030
47	18	141,6671	0,8177	0,5060
48	18	142,5214	0,8544	0,5090

Tablica 21. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C30Z

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	а
0	0	0,0000	0,0000	0,0000
1	71	4,2381	4,2381	0,0151
2	36	5,5189	1,2808	0,0197
3	30	6,8695	1,3506	0,0245
4	44	9,1292	2,2596	0,0326
5	68	12,6503	3,5211	0,0452
6	96	17,5493	4,8990	0,0627
7	126	23,8967	6,3474	0,0853
8	152	31,4293	7,5326	0,1122
9	170	39,7185	8,2892	0,1419
10	182	48,5039	8,7854	0,1732
11	185	57,3217	8,8178	0,2047
12	184	66,0431	8,7214	0,2359
13	176	74,2992	8,2561	0,2654
14	168	82,1756	7,8764	0,2935
15	159	89,6126	7,4370	0,3200
16	148	96,5030	6,8904	0,3447
17	138	102,9310	6,4280	0,3676
18	128	108,8843	5,9533	0,3889
19	117	114,3032	5,4190	0,4082
20	108	119,3195	5,0162	0,4261
21	98	123,8488	4,5294	0,4423
22	90	128,0229	4,1741	0,4572
23	84	131,9367	3,9137	0,4712
24	76	135,4462	3,5096	0,4837
25	72	138,8148	3,3686	0,4958
26	68	141,9936	3,1787	0,5071
27	64	144,9825	2,9889	0,5178
28	59	147,7218	2,7393	0,5276
29	55	150,2835	2,5617	0,5367
30	52	152,7150	2,4315	0,5454
31	48	154,9445	2,2294	0,5534
32	46	157,1034	2,1590	0,5611
33	43	159,1077	2,0043	0,5682
34	41	161,0294	1,9216	0,5751
35	39	162,8561	1,8267	0,5816
36	36	164,5281	1,6721	0,5876
37	35	166,1772	1,6491	0,5935
38	33	167,7191	1,5419	0,5990
39	31	169,1661	1,4470	0,6042
40	30	170,5778	1,4117	0,6092
41	28	171,8824	1,3046	0,6139
42	27	173,1518	1,2693	0,6184
43	26	174,3736	1,2219	0,6228
44	25	175,5480	1,1744	0,6270
45	24	176,6750	1,1270	0,6310
46	24	177,8142	1,1392	0,6351
47	23	178,8936	1,0795	0,6389
48	22	179,9257	1,0320	0,6426

Tablica 22. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C5ZZ20M

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	а
0	0	0,0000	0,0000	0,0000
1	84	5,0141	5,0141	0,0179
2	40	6,3748	1,3607	0,0228
3	28	7,5571	1,1823	0,0270
4	32	9,1249	1,5678	0,0326
5	48	11,5988	2,4740	0,0414
6	72	15,3098	3,7109	0,0547
7	100	20,3986	5,0889	0,0729
8	130	26,9359	6,5373	0,0962
9	155	34,5987	7,6628	0,1236
10	173	43,0303	8,4316	0,1537
11	182	51,7790	8,7487	0,1849
12	184	60,5371	8,7581	0,2162
13	180	69,0320	8,4949	0,2465
14	172	77,0983	8,0662	0,2754
15	162	84,6654	7,5671	0,3024
16	152	91,7579	7,0925	0,3277
17	140	98,2563	6,4985	0,3509
18	128	104,1852	5,9289	0,3721
19	118	109,6639	5,4787	0,3917
20	107	114,6082	4,9443	0,4093
21	98	119,1498	4,5416	0,4255
22	90	123,3238	4,1741	0,4404
23	81	127,0585	3,7347	0,4538
24	75	130,5451	3,4866	0,4662
25	69	133,7468	3,2018	0,4777
26	64	136,7235	2,9767	0,4883
27	60	139,5225	2,7990	0,4983
28	55	142,0720	2,5495	0,5074
29	52	144,5035	2,4315	0,5161
30	48	146,7329	2,2294	0,5240
31	44	148,7725	2,0396	0,5313
32	42	150,7416	1,9691	0,5384
33	40	152,6158	1,8742	0,5451
34	36	154,2756	1,6599	0,5510
35	35	155,9247	1,6491	0,5569
36	33	157,4666	1,5419	0,5624
37	32	158,9733	1,5067	0,5678
38	30	160,3728	1,3995	0,5728
39	28	161,6773	1,3046	0,5774
40	27	162,9467	1,2694	0,5820
41	26	164,1686	1,2218	0,5863
42	25	165,3430	1,1744	0,5905
43	24	166,4699	1,1269	0,5945
44	23	167,5494	1,0795	0,5984
45	22	168,5814	1,0320	0,6021
46	22	169,6256	1,0442	0,6058
47	20	170,5505	0,9249	0,6091
48	20	171,4998	0,9493	0,6125

Tablica 23. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C10ZZ20M

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0.0000	0.0000	0.0000
1	89	5,3125	5,3125	0.0190
2	41	6,6718	1,3592	0,0238
3	24	7,6031	0,9313	0,0272
4	20	8,5035	0,9004	0,0304
5	21	9,5125	1,0090	0,0340
6	27	10,8674	1,3549	0,0388
7	35	12,6265	1,7591	0,0451
8	44	14,8250	2,1985	0,0529
9	56	17,6298	2,8048	0,0630
10	68	21,0042	3,3744	0,0750
11	83	25,1272	4,1230	0,0897
12	96	29,8428	4,7156	0,1066
13	109	35,1755	5,3327	0,1256
14	120	41,0058	5,8303	0,1464
15	128	47,1792	6,1734	0,1685
16	132	53,4935	6,3143	0,1910
17	134	59,8784	6,3848	0,2139
18	133	66,1790	6,3007	0,2364
19	129	72,2532	6,0741	0,2580
20	124	78,0778	5,8246	0,2788
21	116	83,4860	5,4082	0,2982
22	109	88,5741	5,0882	0,3163
23	102	93,3300	4,7559	0,3333
24	94	97,6939	4,3639	0,3489
25	88	101,7975	4,1036	0,3636
26	82	105,6164	3,8188	0,3772
27	76	109,1504	3,5340	0,3898
28	70	112,3996	3,2492	0,4014
29	65	115,4237	3,0241	0,4122
30	61	118,2702	2,8465	0,4224
31	57	120,9268	2,6566	0,4319
32	53	123,3936	2,4668	0,4407
33	49	125,6705	2,2769	0,4488
34	46	127,8172	2,1467	0,4565
35	44	129,8813	2,0640	0,4639
36	40	131,7310	1,8497	0,4705
37	38	133,5102	1,7792	0,4768
38	36	135,1945	1,6843	0,4828
39	34	136,7839	1,5894	0,4885
40	32	138,2783	1,4944	0,4939
41	31	139,7375	1,4592	0,4991
42	29	141,0896	1,3520	0,5039
43	27	142,3467	1,2571	0,5084
44	26	143,5686	1,2219	0,5127
45	25	144,7430	1,1744	0,5169
46	24	145,8699	1,1270	0,5210
47	22	146,8897	1,0198	0,5246
48	22	147,9340	1,0443	0.5283

Tablica 24. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C20ZZ20M

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	а
0	0	0,0000	0,0000	0,0000
1	92	5,4916	5,4916	0,0196
2	45	7,0529	1,5613	0,0252
3	28	8,1741	1,1212	0,0292
4	23	9,2047	1,0306	0,0329
5	25	10,4158	1,2111	0,0372
6	30	11,9009	1,4851	0,0425
7	37	13,7427	1,8418	0,0491
8	45	15,9764	2,2338	0,0571
9	54	18,6496	2,6732	0,0666
10	62	21,6903	3,0407	0,0775
11	70	25,1107	3,4204	0,0897
12	76	28,7914	3,6807	0,1028
13	82	32,7569	3,9655	0,1170
14	86	36,8878	4,1309	0,1317
15	90	41,2086	4,3208	0,1472
16	93	45,6596	4,4510	0,1631
17	94	50,1336	4,4740	0,1790
18	94	54,5953	4,4618	0,1950
19	93	58,9974	4,4021	0,2107
20	91	63,2923	4,2949	0,2260
21	89	67,4923	4,2000	0,2410
22	86	71,5376	4,0453	0,2555
23	82	75,3809	3,8433	0,2692
24	79	79,0940	3,7131	0,2825
25	75	82,6050	3,5110	0,2950
26	72	85,9858	3,3808	0,3071
27	69	89,2242	3,2384	0,3187
28	64	92,2009	2,9767	0,3293
29	60	94,9999	2,7990	0,3393
30	58	97,7285	2,7285	0,3490
31	54	100,2427	2,5142	0,3580
32	51	102,6268	2,3841	0,3665
33	48	104,8684	2,2417	0,3745
34	46	107,0274	2,1590	0,3822
35	43	109,0317	2,0043	0,3894
36	41	110,9533	1,9216	0,3963
37	38	112,7203	1,7670	0,4026
38	38	114,5240	1,8037	0,4090
39	35	116,1486	1,6246	0,4148
40	33	117,6906	1,5419	0,4203
41	32	119,1972	1,5067	0,4257
42	30	120,5967	1,3995	0,4307
43	30	122,0207	1,4240	0,4358
44	28	123,3253	1,3046	0,4404
45	26	124,5349	1,2096	0,4448
46	25	125,7093	1,1744	0,4490
47	24	126,8363	1,1269	0,4530
48	24	127,9755	1,1392	0,4571

Tablica 25. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C30ZZ20M

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	, 0	0.0000	0.0000	0.0000
1	74	4,4172	4,4172	0,0158
2	40	5,9001	1,4829	0,0211
3	38	7,6793	1,7792	0,0274
4	59	10,7365	3,0572	0,0383
5	90	15,3874	4,6509	0,0550
6	126	21,8082	6,4208	0,0779
7	160	29,8184	8,0102	0,1065
8	186	38,9648	9,1464	0,1392
9	200	48,6291	9,6643	0,1737
10	204	58,3609	9,7318	0,2084
11	200	67,8051	9,4442	0,2422
12	190	76,7013	8,8962	0,2739
13	178	85,0034	8,3021	0,3036
14	165	92,6763	7,6729	0,3310
15	152	99,7321	7,0558	0,3562
16	140	106,2305	6,4985	0,3794
17	128	112,1594	5,9289	0,4006
18	117	117,5784	5,4190	0,4199
19	107	122,5349	4,9565	0,4376
20	98	127,0765	4,5416	0,4538
21	91	131,3103	4,2338	0,4690
22	83	135,1521	3.8418	0,4827
23	78	138,7933	3,6412	0,4957
24	72	142,1374	3,3441	0,5076
25	67	145,2565	3,1191	0,5188
26	62	148,1382	2,8817	0,5291
27	58	150,8423	2,7041	0,5387
28	54	153,3565	2,5142	0,5477
29	51	155,7406	2,3841	0,5562
30	48	157,9822	2,2417	0,5642
31	46	160,1412	2,1589	0,5719
32	43	162,1455	2,0043	0,5791
33	41	164,0672	1,9216	0,5860
34	38	165,8342	1,7670	0,5923
35	37	167,5782	1,7440	0,5985
36	35	169,2150	1,6368	0,6043
37	34	170,8166	1,6016	0,6101
38	33	172,3707	1,5541	0,6156
39	31	173,8177	1,4470	0,6208
40	30	175,2295	1,4117	0,6258
41	29	176,5937	1,3643	0,6307
42	28	177,9105	1,3168	0,6354
43	26	179,1202	1,2097	0,6397
44	26	180,3543	1,2341	0,6441
45	25	181,5287	1,1744	0,6483
46	24	182,6556	1,1269	0,6523
47	23	183,7351	1,0795	0,6562
48	23	184.8268	1.0917	0.6601

Tablica 26. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C5ZZ30M

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	а
0	0	0,0000	0,0000	0,0000
1	79	4,7156	4,7156	0,0168
2	39	6,0777	1,3621	0,0217
3	30	7,3917	1,3139	0,0264
4	37	9,2335	1,8418	0.0330
5	55	12.0641	2.8307	0.0431
6	79	16.1073	4.0432	0.0575
7	107	21,5285	5.4211	0.0769
8	135	28.2786	6,7502	0.1010
9	157	35,9997	7.7210	0.1286
10	171	44.2874	8.2878	0.1582
11	179	52,8815	8 5941	0.1889
12	179	61 3778	8 4963	0,1002
13	175	69.6354	8,2575	0.2487
14	167	77 4643	7 8289	0 2767
15	159	84 9135	7 4492	0 3033
16	147	91 7442	6 8307	0 3277
17	137	98 1247	6 3805	0,3504
18	126	103 9709	5 8462	0,3504
10	116	109.3546	5 3837	0,3906
20	107	114 3234	1 0688	0,3900
20	00	114,3234	4,9088	0,4083
21	99	110,9247	4,0013	0,4247
22	91	125,1402	4,2210	0,4598
23	83 79	120,9880	3,6418	0,4355
24	78	130,6292	3,0412	0,4003
25	/1	135,9157	3,2843	0,4785
20	62	137,0449	3,1313	0,4894
27	03 50	139,9804	2,9414	0,5000
28	59	142,7379	2,7510	0,5098
29	55	145,2996	2,5017	0,5189
30	52	14/,/311	2,4315	0,5276
22	47	149,9009	2,1097	0,5354
32	44	151,9527	2,0518	0,5427
33	41	153,8621	1,9094	0,5495
34	39	155,6888	1,8267	0,5560
35	30	157,3609	1,0/21	0,5620
30	35	159,0099	1,6490	0,5679
5/	32	160,4921	1,4822	0,5732
38	32	162,0110	1,5189	0,5786
39	30	163,4106	1,3995	0,5836
40	29	164,7/48	1,3643	0,5885
41	27	166,0319	1,25/1	0,5930
42	27	167,3135	1,2816	0,5975
43	25	168,4757	1,1622	0,6017
44	24	169,6026	1,1269	0,6057
45	23	170,6821	1,0795	0,6096
46	23	171,7738	1,0917	0,6135
47	22	172,8058	1,0320	0,6172
48	21	173,7904	0,9845	0,6207

Tablica 27. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnja hidratacije u funkciji vremena hidratacije za uzorak C10ZZ30M

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	93	5,5513	5,5513	0,0198
2	52	7,5182	1,9669	0,0269
3	38	9,1508	1,6325	0,0327
4	34	10,7157	1,5649	0,0383
5	36	12,4489	1,7332	0,0445
6	41	14,4561	2,0072	0.0516
7	48	16,8200	2,3639	0,0601
8	56	19,5759	2,7559	0,0699
9	66	22,8309	3,2550	0.0815
10	74	26,4411	3,6102	0,0944
11	84	30,5505	4,1094	0,1091
12	93	35,0748	4,5243	0,1253
13	101	39,9666	4,8918	0,1427
14	109	45,2382	5,2715	0,1616
15	114	50,7104	5,4722	0,1811
16	119	56,4199	5,7095	0,2015
17	122	62,2473	5,8275	0,2223
18	124	68,1575	5,9102	0,2434
19	124	74,0432	5,8857	0,2644
20	124	79,9289	5,8857	0,2855
21	122	85,6953	5,7663	0,3061
22	119	91,3070	5,6117	0,3261
23	116	96,7763	5,4693	0,3456
24	112	102,0435	5,2672	0,3644
25	108	107,1209	5,0774	0,3826
26	104	112,0084	4,8875	0,4000
27	99	116,6463	4,6380	0,4166
28	94	121,0469	4,4006	0,4323
29	90	125,2699	4,2230	0,4474
30	86	129,3030	4,0331	0,4618
31	82	133,1463	3,8433	0,4755
32	78	136,7997	3,6534	0,4886
33	74	140,2633	3,4635	0,5009
34	70	143,5369	3,2737	0,5126
35	67	146,6804	3,1435	0,5239
36	64	149,6815	3,0011	0,5346
37	62	152,6000	2,9184	0,5450
38	59	155,3637	2,7638	0,5549
39	57	158,0448	2,6811	0,5644
40	54	160,5713	2,5265	0,5735
41	52	163,0150	2,4438	0,5822
42	50	165,3638	2,3488	0,5906
43	49	167,6774	2,3136	0,5988
44	47	169,8838	2,2064	0,6067
45	46	172,0550	2,1712	0,6145
46	45	174,1787	2,1237	0,6221
47	44	176,2550	2,0762	0,6295
48	43	178,2838	2,0288	0,6367

Tablica 28. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C20ZZ30M
Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	92	5,4916	5,4916	0,0196
2	43	6,9336	1,4419	0,0248
3	24	7,8404	0,9069	0,0280
4	18	8,6214	0,7810	0,0308
5	16	9,3564	0,7350	0,0334
6	18	10,2353	0,8788	0,0366
7	20	11,2090	0,9738	0,0400
8	23	12,3374	1,1284	0,0441
9	24	13,4888	1,1514	0,0482
10	26	14,7474	1,2586	0,0527
11	28	16,1009	1,3535	0,0575
12	31	17,6090	1,5081	0,0629
13	33	19,1998	1,5908	0,0686
14	37	21,0049	1,8051	0,0750
15	40	22,9402	1,9353	0,0819
16	44	25,0776	2,1374	0,0896
17	48	27,4048	2,3272	0,0979
18	52	29,9219	2,5171	0,1069
19	56	32,6289	2,7070	0,1165
20	58	35,4063	2,7774	0,1265
21	61	38,3384	2,9321	0,1369
22	64	41,4129	3,0745	0,1479
23	67	44,6297	3,2169	0,1594
24	69	47,9293	3,2996	0,1712
25	70	51,2641	3,3348	0,1831
26	71	54,6464	3,3823	0,1952
27	72	58,0761	3,4297	0,2074
28	71	61,4339	3,3578	0,2194
29	70	64,7443	3,3104	0,2312
30	69	68,0072	3,2629	0,2429
31	68	71,2226	3,2154	0,2544
32	65	74,2712	3,0486	0,2653
33	63	77,2371	2,9659	0,2758
34	61	80,1080	2,8709	0,2861
35	58	82,8243	2,7163	0,2958
36	56	85,4579	2,6336	0,3052
37	53	87,9369	2,4790	0,3141
38	52	90,3929	2,4560	0,3228
39	49	92,6820	2,2891	0,3310
40	47	94,8884	2,2064	0,3389
41	44	96,9402	2,0518	0,3462
42	42	98,9093	1,9691	0,3532
43	40	100,7835	1,8742	0,3599
44	38	102,5627	1,7792	0,3663
45	36	104,2470	1,6843	0,3723
46	34	105,8364	1,5894	0,3780
47	32	107,3309	1,4944	0,3833
48	32	108.8498	1.5189	0.3887

Tablica 29. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C30ZZ30M

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	а
0	0	0,0000	0,0000	0,0000
1	75	4,4769	4,4769	0,0160
2	39	5,8879	1,4110	0,0210
3	31	7,2615	1,3736	0,0259
4	43	9,4492	2,1877	0,0337
5	67	12,9228	3,4736	0,0462
6	99	18,0131	5,0903	0,0643
7	133	24,7417	6,7286	0,0884
8	163	32,8454	8,1036	0,1173
9	187	42,0148	9,1695	0,1501
10	199	51,6072	9,5923	0,1843
11	201	61,1722	9,5650	0,2185
12	197	70,4739	9,3018	0,2517
13	188	79,2874	8,8135	0,2832
14	177	87,5543	8,2669	0,3127
15	165	95,2394	7,6851	0,3401
16	152	102,2952	7,0558	0,3653
17	141	108,8534	6,5582	0,3888
18	128	114,7700	5,9166	0,4099
19	117	120,1890	5,4190	0,4292
20	108	125,2052	5,0162	0,4472
21	99	129,7942	4,5890	0,4636
22	91	134,0158	4,2215	0,4786
23	83	137,8576	3,8418	0,4923
24	76	141,3794	3,5218	0,5049
25	71	144,6883	3,3089	0,5167
26	65	147,7002	3,0119	0,5275
27	61	150,5467	2,8465	0,5377
28	57	153,2033	2,6566	0,5472
29	54	155,7298	2,5265	0,5562
30	51	158,1138	2,3840	0,5647
31	47	160,2958	2,1820	0,5725
32	44	162,3476	2,0518	0,5798
33	43	164,3764	2,0288	0,5871
34	40	166,2383	1,8619	0,5937
35	38	168,0176	1,7792	0,6001
36	37	169,7616	1,7440	0,6063
37	35	171,3984	1,6368	0,6121
38	34	173,0000	1,6016	0,6179
39	32	174,4945	1,4944	0,6232
40	31	175,9537	1,4592	0,6284
41	29	177,3057	1,3521	0,6332
42	28	178,6225	1,3168	0,6379
43	27	179,8919	1,2693	0,6425
44	27	181,1734	1,2816	0,6470
45	25	182,3356	1,1622	0,6512
46	24	183,4625	1,1269	0,6552
47	23	184,5420	1,0795	0,6591
48	22	185,5740	1,0320	0,6628

Tablica 30. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C5ZZ40M

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	79	4,7156	4,7156	0,0168
2	36	5,8987	1,1830	0,0211
3	23	6,8314	0,9328	0,0244
4	22	7,8634	1,0320	0,0281
5	31	9,4449	1,5815	0,0337
6	45	11,7520	2,3071	0,0420
7	63	14.9624	3.2104	0.0534
8	83	19.1465	4.1841	0.0684
9	103	24,2800	5.1335	0.0867
10	121	30.2434	5.9634	0.1080
11	137	36.9418	6.6984	0.1319
12	147	44,0415	7,0997	0,1573
13	153	51.3770	7.3356	0.1835
14	157	58,8780	7,5010	0.2103
15	157	66.3301	7.4521	0.2369
16	153	73,5434	7.2133	0.2627
17	148	80.5071	6.9638	0.2875
18	141	87.1142	6.6070	0.3111
19	133	93.3293	6.2151	0.3333
20	125	99,1646	5.8354	0.3542
21	116	104.5606	5,3960	0.3734
22	107	109 5294	4 9688	0 3912
23	99	114,1307	4,6013	0.4076
24	91	118.3522	4.2215	0.4227
25	84	122.2537	3.9015	0.4366
26	78	125,8827	3.6289	0.4496
27	72	129,2268	3,3442	0,4615
28	67	132,3459	3,1190	0,4727
29	62	135,2276	2,8817	0,4830
30	57	137,8720	2,6444	0,4924
31	53	140,3388	2,4668	0,5012
32	49	142,6157	2,2769	0,5093
33	45	144,7027	2,0870	0,5168
34	42	146.6596	1.9569	0.5238
35	39	148,4740	1,8145	0,5303
36	37	150,2058	1,7318	0,5364
37	36	151,9024	1,6965	0,5425
38	34	153,4917	1,5894	0,5482
39	33	155,0459	1,5541	0,5537
40	31	156,4928	1,4470	0,5589
41	29	157,8449	1,3521	0,5637
42	28	159,1617	1,3168	0,5684
43	27	160,4310	1,2693	0,5730
44	25	161,5932	1,1622	0,5771
45	25	162,7799	1,1866	0,5814
46	24	163.9068	1,1269	0.5854
47	23	164,9863	1,0795	0,5892
48	22	166.0183	1.0320	0.5929

Tablica 31. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C10ZZ40M

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	84	5,0141	5,0141	0,0179
2	39	6,3151	1,3010	0,0226
3	23	7,2112	0,8961	0,0258
4	18	8,0044	0,7932	0,0286
5	18	8,8588	0,8544	0,0316
6	22	9,9519	1,0931	0,0355
7	25	11,1752	1,2233	0,0399
8	30	12,6603	1,4851	0,0452
9	34	14,3231	1,6627	0,0512
10	38	16,1756	1,8526	0,0578
11	42	18,2181	2,0425	0,0651
12	46	20,4504	2,2323	0,0730
13	48	22,7532	2,3028	0,0813
14	51	25,2106	2,4574	0,0900
15	54	27,8104	2,5998	0,0993
16	58	30,6123	2,8019	0,1093
17	62	33,6041	2,9918	0,1200
18	65	36,7260	3.1219	0.1312
19	67	39,9307	3.2046	0.1426
20	70	43,2899	3,3593	0,1546
21	72	46.7319	3,4420	0.1669
22	74	50.2688	3.5369	0.1795
23	74	53,7812	3.5124	0.1921
24	76	57,4130	3.6318	0.2050
25	75	60.9607	3.5477	0.2177
26	75	64,5206	3.5599	0.2304
27	74	68.0208	3,5002	0.2429
28	74	71.5333	3.5125	0.2555
29	73	74,9860	3.4527	0.2678
30	71	78.3316	3.3456	0.2798
31	70	81.6420	3.3104	0.2916
32	68	84,8452	3.2032	0.3030
33	66	87.9535	3,1083	0.3141
34	64	90,9668	3.0133	0.3249
35	62	93.8852	2,9184	0.3353
36	60	96.7087	2.8235	0.3454
37	58	99,4372	2,7285	0,3551
38	56	102.0708	2.6336	0.3645
39	53	104,5498	2,4790	0,3734
40	51	106,9461	2,3963	0,3820
41	49	109.2475	2.3014	0.3902
42	48	111,5136	2,2661	0,3983
43	45	113.6128	2.0993	0.4058
44	43	115.6294	2.0166	0.4130
45	42	117,6107	1,9813	0,4200
46	41	119,5446	1.9339	0.4269
47	38	121,3116	1,7670	0,4333
48	38	123,1153	1.8037	0.4397

Tablica 32. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C20ZZ40M

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
ĥ	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	96	5,7304	5,7304	0,0205
2	45	7,2428	1,5124	0,0259
3	26	8,2446	1,0018	0,0294
4	19	9,0609	0,8163	0,0324
5	18	9,9030	0,8422	0,0354
6	19	10,8171	0,9141	0,0386
7	21	11,8383	1,0212	0,0423
8	22	12,8948	1,0565	0,0461
9	22	13,9390	1,0442	0,0498
10	23	15,0429	1,1039	0,0537
11	23	16,1347	1,0917	0,0576
12	25	17,3457	1,2111	0,0619
13	26	18,5921	1,2463	0,0664
14	26	19,8262	1,2341	0,0708
15	28	21,1797	1,3535	0,0756
16	30	22,6281	1,4484	0,0808
17	32	24,1714	1,5433	0,0863
18	34	25,8097	1,6383	0,0922
19	35	27,4832	1,6735	0,0982
20	38	29,3236	1,8404	0,1047
21	38	31,1273	1,8037	0,1112
22	42	33,1697	2,0425	0,1185
23	44	35,2826	2,1129	0,1260
24	46	37,4905	2,2079	0,1339
25	49	39,8530	2,3625	0,1423
26	51	42,2982	2,4452	0,1511
27	54	44,8980	2,5998	0,1603
28	54	47,4611	2,5631	0,1695
29	54	50,0243	2,5631	0,1787
30	54	52,5874	2,5631	0,1878
31	55	55,2102	2,6228	0,1972
32	55	57,8208	2,6106	0,2065
33	56	60,4911	2,6703	0,2160
34	54	63,0298	2,5387	0,2251
35	54	65,5929	2,5631	0,2343
36	53	68,0964	2,5034	0,2432
37	51	70,4926	2,3963	0,2518
38	51	72,9134	2,4207	0,2604
39	51	75,3341	2,4207	0,2691
40	50	77,6952	2,3610	0,2775
41	48	79,9491	2,2539	0,2855
42	47	82,1677	2,2187	0,2935
43	46	84,3389	2,1712	0,3012
44	45	86,4626	2,1237	0,3088
45	43	88,4792	2,0166	0,3160
40	42	90,4605	1,9813	0,3231
4/	40	92,3347	1,8/42	0,3298
48	39	94.1736	1.8389	0.3363

Tablica 33. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C30ZZ40M

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
ĥ	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	16	0,9551	0,9551	0,0034
2	20	1,9533	0,9982	0,0070
3	30	3,4995	1,5462	0,0125
4	44	5,7591	2,2596	0,0206
5	60	8,8027	3,0435	0,0314
6	78	12,7251	3,9224	0,0454
7	98	17,6212	4,8961	0,0629
8	114	23,2279	5,6067	0,0830
9	128	29,4746	6,2467	0,1053
10	138	36,1471	6,6725	0,1291
11	144	43,0555	6,9084	0,1538
12	145	49,9502	6,8947	0,1784
13	143	56,7133	6,7631	0,2025
14	138	63,2024	6,4891	0,2257
15	130	69,2751	6,0727	0,2474
16	122	74,9681	5,6930	0,2677
17	114	80,2813	5,3132	0,2867
18	106	85,2148	4,9335	0,3043
19	98	89,7686	4,5538	0,3206
20	90	93,9427	4,1741	0,3355
21	82	97,7371	3,7944	0,3491
22	75	101,2114	3,4743	0,3615
23	70	104,4729	3,2614	0,3731
24	65	107,4970	3,0241	0,3839
25	60	110,2838	2,7868	0,3939
26	55	112,8333	2,5495	0,4030
27	50	115,1454	2,3121	0,4112
28	46	117,2799	2,1345	0,4189
29	42	119,2246	1,9446	0,4258
30	40	121,0987	1,8742	0,4325
31	37	122,8183	1,7195	0,4386
32	34	124,3954	1,5772	0,4443
33	30	125,7705	1,3751	0,4492
34	28	127,0750	1,3046	0,4538
35	26	128,2847	1,2097	0,4582
36	23	129,3397	1,0550	0,4619
37	21	130,3120	0,9723	0,4654
38	20	131,2491	0,9371	0,4687
39	18	132,0791	0,8299	0,4717
40	17	132,8737	0,7947	0,4745
41	15	133,5613	0,6875	0,4770
42	14	134,2136	0,6523	0,4793
43	13	134,8184	0,6048	0,4815
44	12	135,3757	0,5574	0,4835
45	11	135,8856	0,5099	0,4853
46	10	136,3481	0,4624	0,4870
47	10	136,8227	0,4747	0,4887
48	9	137,2377	0,4150	0,4901

Tablica 34. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C5ZZ50M

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	78	4,6559	4,6559	0,0166
2	36	5,8512	1,1953	0,0209
3	21	6,6646	0,8134	0,0238
4	15	7,3032	0,6386	0,0261
5	17	8,1346	0,8314	0,0291
6	22	9,2399	1,1054	0,0330
7	29	10,7020	1,4621	0,0382
8	40	12,7351	2,0331	0,0455
9	53	15,4097	2,6746	0,0550
10	66	18,7014	3,2917	0,0668
11	81	22,7295	4,0281	0,0812
12	94	27,3502	4,6207	0.0977
13	108	32,6476	5,2974	0,1166
14	120	38,4902	5,8426	0,1375
15	129	44,7232	6.2331	0.1597
16	137	51,3238	6,6006	0,1833
17	141	58,0653	6,7415	0,2074
18	142	64.8177	6.7523	0.2315
19	142	71,5577	6,7401	0.2556
20	140	78.1785	6.6207	0.2792
21	136	84,5848	6.4064	0.3021
22	130	90.6820	6.0972	0.3239
23	125	96,5540	5.8720	0.3448
24	117	102.0097	5.4557	0.3643
25	112	107.2647	5.2550	0.3831
26	105	112,1630	4,8983	0.4006
27	97	116.6693	4,5063	0.4167
28	90	120.8556	4,1863	0.4316
29	85	124,8291	3,9734	0.4458
30	79	128,5055	3.6764	0.4589
31	73	131.8971	3.3916	0.4711
32	69	135.1233	3,2262	0.4826
33	64	138.1000	2.9767	0.4932
34	60	140,8990	2,7990	0,5032
35	57	143.5678	2.6689	0.5127
36	53	146,0346	2,4668	0,5216
37	50	148.3712	2.3366	0,5299
38	47	150,5654	2,1942	0,5377
39	44	152,6172	2.0518	0.5451
40	42	154,5863	1.9691	0.5521
41	40	156,4605	1,8742	0,5588
42	38	158,2397	1.7792	0.5651
43	37	159,9837	1,7440	0,5714
44	35	161.6205	1.6368	0.5772
45	33	163.1625	1.5419	0.5827
46	32	164.6691	1.5067	0.5881
47	30	166.0686	1.3995	0.5931
48	29	167,4329	1,3643	0.5980

Tablica 35. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C10ZZ50M

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
ĥ	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	85	5,0738	5,0738	0,0181
2	39	6,3625	1,2888	0,0227
3	21	7,1392	0,7767	0,0255
4	13	7,6585	0,5192	0,0274
5	11	8,1561	0,4977	0,0291
6	11	8,6783	0,5221	0,0310
7	12	9,2601	0,5818	0,0331
8	12	9,8297	0,5696	0,0351
9	14	10,5186	0,6890	0,0376
10	15	11,2428	0,7242	0,0402
11	15	11,9548	0,7120	0,0427
12	16	12,7265	0,7717	0,0455
13	16	13,4859	0,7594	0,0482
14	18	14,3648	0,8788	0,0513
15	18	15,2191	0,8544	0,0544
16	20	16,1929	0,9738	0,0578
17	22	17,2616	1,0687	0,0616
18	22	18,3058	1,0442	0,0654
19	24	19,4695	1,1636	0,0695
20	27	20,7877	1,3182	0,0742
21	29	22,1887	1,4009	0,0792
22	32	23,7442	1,5556	0,0848
23	36	25,5019	1,7577	0,0911
24	38	27,3300	1,8281	0,0976
25	42	29,3725	2,0425	0,1049
26	44	31,4854	2,1129	0,1124
27	48	33,8127	2,3272	0,1208
28	51	36,2701	2,4574	0,1295
29	53	38,8102	2,5401	0,1386
30	56	41,5049	2,6947	0,1482
31	58	44,2824	2,7775	0,1582
32	60	47,1548	2,8724	0,1684
33	60	50,0027	2,8479	0,1786
34	62	52,9700	2,9673	0,1892
35	63	55,9725	3,0025	0,1999
36	63	58,9629	2,9903	0,2106
37	64	62,0129	3,0500	0,2215
38	64	65,0507	3,0378	0,2323
39	64	68,0885	3,0378	0,2432
40	64	71,1262	3,0378	0,2540
41	64	74,1640	3,0378	0,2649
42	62	77,0824	2,9184	0,2753
43	60	/9,9059	2,8235	0,2854
44	59	82,6941	2,7882	0,2953
45	58	85,4349	2,7408	0,3051
46	56	88,0685	2,6336	0,3145
4/	56	90,7266	2,6581	0,3240
48	54	93.2653	2.5387	0.3331

Tablica 36. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C20ZZ50M

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
ĥ	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	106	6,3273	6,3273	0,0226
2	52	8,1353	1,8080	0,0291
3	35	9,5887	1,4534	0,0342
4	30	10,9516	1,3628	0,0391
5	31	12,4352	1,4837	0,0444
6	31	13,9067	1,4714	0,0497
7	31	15,3781	1,4714	0,0549
8	29	16,7301	1,3520	0,0598
9	27	17,9872	1,2571	0,0642
10	24	19,0897	1,1025	0,0682
11	24	20,2289	1,1392	0,0722
12	23	21,3084	1,0795	0,0761
13	23	22,4001	1,0917	0,0800
14	22	23,4321	1,0320	0,0837
15	21	24,4167	0,9845	0,0872
16	21	25,4134	0,9968	0,0908
17	21	26,4102	0,9968	0,0943
18	21	27,4070	0,9968	0,0979
19	22	28,4634	1,0565	0,1017
20	21	29,4480	0,9845	0,1052
21	21	30,4448	0,9968	0,1087
22	23	31,5609	1,1162	0,1127
23	23	32,6526	1,0917	0,1166
24	23	33,7443	1,0917	0,1205
25	24	34,8957	1,1514	0,1246
26	24	36,0349	1,1392	0,1287
27	25	37,2338	1,1989	0,1330
28	27	38,5398	1,3060	0,1376
29	26	39,7617	1,2219	0,1420
30	28	41,1151	1,3535	0,1468
31	28	42,4442	1,3290	0,1516
32	29	43,8329	1,3887	0,1565
33	29	45,2094	1,3765	0,1615
34	29	46,5859	1,3765	0,1664
35	29	47,9624	1,3765	0,1713
36	31	49,4583	1,4959	0,1766
37	31	50,9297	1,4714	0,1819
38	31	52,4011	1,4714	0,1871
39	32	53,9322	1,5311	0,1926
40	32	55,4511	1,5189	0,1980
41	32	56,9700	1,5189	0,2035
42	32	58,4889	1,5189	0,2089
43	32	60,0078	1,5189	0,2143
44	32	61,5267	1,5189	0,2197
45	32	63,0456	1,5189	0,2252
46	32	64,5645	1,5189	0,2306
47	32	66,0834	1,5189	0,2360
48	32	67.6023	1.5189	0.2414

Tablica 37. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C30ZZ50M

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	α
0	0	0,0000	0,0000	0,0000
1	68	4,0590	4,0590	0,0145
2	31	5,0781	1,0191	0,0181
3	21	5,9526	0,8745	0,0213
4	19	6,8300	0,8774	0,0244
5	25	8,0900	1,2600	0,0289
6	39	10,1123	2,0223	0,0361
7	58	13,0976	2,9853	0,0468
8	79	17,1041	4,0065	0,0611
9	103	22,2865	5,1824	0,0796
10	125	28,4886	6,2022	0,1017
11	143	35,4962	7,0076	0,1268
12	155	43,0001	7,5039	0,1536
13	163	50,8348	7,8347	0,1816
14	166	58,7507	7,9159	0,2098
15	165	66,5703	7,8196	0,2378
16	163	74,2827	7,7124	0,2653
17	158	81,7211	7,4384	0,2919
18	153	88,9222	7,2011	0,3176
19	146	95,7666	6,8444	0,3420
20	139	102,2787	6,5121	0,3653
21	131	108,3988	6,1202	0,3871
22	122	114,0796	5,6807	0,4074
23	113	119,3332	5,2536	0,4262
24	107	124,3386	5,0054	0,4441
25	99	128,9399	4,6013	0,4605
26	94	133,3405	4,4006	0,4762
27	88	137,4441	4,1036	0,4909
28	83	141,3226	3,8785	0,5047
29	79	145,0235	3,7009	0,5179
30	76	148,5942	3,5707	0,5307
31	72	151,9627	3,3686	0,5427
32	70	155,2609	3,2981	0,5545
33	66	158,3447	3,0838	0,5655
34	63	161,2983	2,9536	0,5761
35	60	164,1096	2,8112	0,5861
36	58	166,8381	2,7285	0,5959
37	55	169,4121	2,5739	0,6050
38	53	171,9033	2,4912	0,6139
39	51	174,2996	2,3963	0,6225
40	49	176,6009	2,3013	0,6307
41	47	178,8073	2,2064	0,6386
42	46	180,9785	2,1712	0,6464
43	44	183,0426	2,0640	0,6537
44	43	185,0713	2,0288	0,6610
45	42	187,0527	1,9813	0,6680
46	40	188,9268	1,8742	0,6747
47	39	190,7658	1,8389	0,6813
48	38	192,5572	1,7915	0,6877

Tablica 38. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C0,2PbO

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
ĥ	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	77	4,5962	4,5962	0,0164
2	34	5,6843	1,0881	0,0203
3	18	6,3431	0,6588	0,0227
4	12	6,8393	0,4962	0,0244
5	11	7,3492	0,5099	0,0262
6	12	7,9310	0,5818	0,0283
7	16	8,7394	0,8084	0,0312
8	26	10,0958	1,3564	0,0361
9	40	12,1655	2,0698	0,0434
10	59	15,1983	3,0328	0,0543
11	80	19,2523	4,0540	0,0688
12	101	24,3030	5,0508	0,0868
13	120	30,2312	5,9281	0,1080
14	134	36,7627	6,5315	0,1313
15	145	43,7797	7,0170	0,1564
16	154	51,1994	7,4197	0,1829
17	158	58,7478	7,5484	0,2098
18	157	66,1877	7,4399	0,2364
19	154	73,4607	7,2730	0,2624
20	150	80,5316	7,0709	0,2876
21	142	87,1739	6,6423	0,3113
22	134	93,4364	6,2626	0,3337
23	125	99,2596	5,8232	0,3545
24	116	104,6555	5,3960	0,3738
25	108	109,6840	5,0285	0,3917
26	100	114,3327	4,6487	0,4083
27	93	118,6614	4,3287	0,4238
28	87	122,7176	4,0561	0,4383
29	82	126,5486	3,8310	0,4520
30	77	130,1423	3,5937	0,4648
31	73	133,5584	3,4161	0,4770
32	69	136,7846	3,2262	0,4885
33	66	139,8807	3,0961	0,4996
34	62	142,7746	2,8940	0,5099
35	59	145,5384	2,7638	0,5198
36	56	148,1598	2,6214	0,5291
37	53	150,6388	2,4790	0,5380
38	51	153,0351	2,3963	0,5466
39	48	155,2767	2,2417	0,5546
40	47	157,4954	2,2187	0,5625
41	45	159,6068	2,1115	0,5700
42	42	161,5637	1,9569	0,5770
43	41	163,4976	1,9339	0,5839
44	38	165,2646	1,7670	0,5902
45	38	167,0683	1,8037	0,5967
46	36	168,7526	1,6843	0,6027
47	35	170,4016	1,6491	0,6086
48	34	172,0032	1,6016	0,6143

Tablica 39. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C0,3PbO

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
ĥ	μV	J/g	J/gh	α
0	0	0,0000	0,0000	0,0000
1	70	4,1784	4,1784	0,0149
2	34	5,3521	1,1737	0,0191
3	18	6,0109	0,6588	0,0215
4	11	6,4474	0,4365	0,0230
5	8	6,7904	0,3430	0,0243
6	7	7,1105	0,3200	0,0254
7	7	7,4427	0,3323	0,0266
8	8	7,8347	0,3919	0,0280
9	10	8,3338	0,4991	0,0298
10	14	9,0472	0,7134	0,0323
11	18	9,9505	0,9033	0,0355
12	23	11,1033	1,1528	0,0397
13	33	12,7919	1,6886	0,0457
14	44	15,0149	2,2230	0,0536
15	59	17,9988	2,9839	0,0643
16	75	21,7543	3,7555	0,0777
17	90	26,2096	4,4553	0,0936
18	103	31,2574	5,0479	0,1116
19	116	36,9224	5,6649	0,1319
20	124	42,9059	5,9835	0,1532
21	131	49,2094	6,3036	0,1757
22	135	55,6662	6,4567	0,1988
23	135	62,0740	6,4078	0,2217
24	135	68,4818	6,4078	0,2446
25	131	74,6509	6,1691	0,2666
26	128	80,6898	6,0389	0,2882
27	123	86,4669	5,7771	0,3088
28	118	92,0067	5,5398	0,3286
29	114	97,3689	5,3622	0,3477
30	110	102,5412	5,1723	0,3662
31	107	107,5833	5,0421	0,3842
32	103	112,4233	4,8400	0,4015
33	100	117,1332	4,7099	0,4183
34	98	121,7604	4,6272	0,4349
35	93	126,1135	4,3531	0,4504
36	90	130,3487	4,2352	0,4655
37	86	134,3819	4,0331	0,4799
38	81	138,1654	3,7836	0,4934
39	78	141,8310	3,6656	0,5065
40	73	145,2349	3,4038	0,5187
41	70	148,5208	3,2859	0,5304
42	67	151,6643	3,1435	0,5417
43	63	154,6057	2,9414	0,5522
44	59	157,3573	2,7516	0,5620
45	57	160,0384	2,6811	0,5716
46	55	162,6245	2,5862	0,5808
47	53	165,1157	2,4912	0,5897
48	51	167,5120	2,3963	0,5983

Tablica 40. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C0,4PbO

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	α
0	0	0,0000	0,0000	0,0000
1	77	4,5962	4,5962	0,0164
2	38	5,9231	1,3269	0,0212
3	19	6,5927	0,6696	0,0235
4	10	6,9573	0,3646	0,0248
5	7	7,2529	0,2956	0,0259
6	6	7,5254	0,2726	0,0269
7	5	7,7505	0,2251	0,0277
8	5	7,9879	0,2373	0,0285
9	5	8,2252	0,2373	0,0294
10	5	8,4625	0,2373	0,0302
11	5	8,6998	0,2373	0,0311
12	7	9,0565	0,3567	0,0323
13	7	9,3888	0,3323	0,0335
14	10	9,9001	0,5113	0,0354
15	16	10,7329	0,8328	0,0383
16	23	11,9102	1,1773	0,0425
17	35	13,7182	1,8080	0,0490
18	51	16,3346	2,6164	0,0583
19	69	19,8298	3,4952	0,0708
20	86	24,1196	4,2899	0,0861
21	102	29,1567	5,0371	0,1041
22	113	34,6548	5,4981	0,1238
23	121	40,4959	5,8411	0,1446
24	125	46,4780	5,9821	0,1660
25	123	52,2918	5,8138	0,1868
26	121	58.0107	5,7189	0.2072
27	119	63,6346	5,6239	0,2273
28	114	68.9845	5,3499	0.2464
29	110	74,1568	5,1723	0.2648
30	106	79.1393	4,9824	0.2826
31	101	83.8721	4,7329	0.2995
32	99	88.5468	4,6746	0.3162
33	96	93.0668	4,5200	0.3324
34	93	97.4444	4.3776	0.3480
35	92	101.7990	4,3546	0.3636
36	90	106.0464	4.2474	0.3787
37	87	110.1392	4.0928	0.3934
38	87	114.2687	4.1295	0.4081
39	83	118,1595	3,8907	0.4220
40	81	121.9797	3.8203	0.4356
41	80	125.7647	3.7850	0.4492
42	76	129.3232	3.5585	0.4619
43	73	132.7515	3.4283	0.4741
44	69	135 9777	3 2262	0.4856
45	65	139 0140	3 0363	0 4965
46	63	141 9799	2 9659	0 5071
47	60	144 7912	2,5055	0 5171
18	56	147 4002	2,0112	0.5264
+0			2.0071	U.J/J/14

Tablica 41. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C0,5PbO

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
ĥ	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	75	4,4769	4,4769	0,0160
2	31	5,4103	0,9335	0,0193
3	15	5,9267	0,5164	0,0212
4	8	6,2208	0,2941	0,0222
5	6	6,4812	0,2603	0,0231
6	5	6,7063	0,2251	0,0240
7	5	6,9436	0,2373	0,0248
8	5	7,1809	0,2373	0,0256
9	3	7,2989	0,1179	0,0261
10	4	7,5010	0,2021	0,0268
11	5	7,7505	0,2496	0,0277
12	4	7,9282	0,1776	0,0283
13	4	8,1180	0,1899	0,0290
14	4	8,3079	0,1899	0,0297
15	4	8,4978	0,1899	0,0303
16	5	8,7473	0,2496	0,0312
17	7	9,1040	0,3567	0,0325
18	8	9,4960	0,3919	0,0339
19	11	10,0548	0,5588	0,0359
20	15	10,8156	0,7609	0,0386
21	21	11,8858	1,0701	0,0424
22	29	13,3601	1,4743	0,0477
23	39	15,3335	1,9734	0,0548
24	48	17,7219	2,3884	0,0633
25	59	20,6568	2,9349	0,0738
26	71	24,1736	3,5168	0,0863
27	83	28,2599	4,0863	0,1009
28	93	32,7965	4,5365	0,1171
29	103	37,8077	5,0112	0,1350
30	109	43,0548	5,2471	0,1538
31	113	48,4672	5,4125	0,1731
32	115	53,9502	5,4830	0,1927
33	115	59,4087	5,4585	0,2122
34	115	64,8673	5,4585	0,2317
35	114	70,2661	5,3988	0,2510
36	112	75,5578	5,2917	0,2698
37	110	80,7545	5,1967	0,2884
38	107	85,7967	5,0421	0,3064
39	105	90,7561	4,9594	0,3241
40	103	95,6206	4,8645	0,3415
41	101	100,3901	4,7696	0,3585
42	99	105,0647	4,6746	0,3752
43	95	109,5251	4,4603	0,3912
44	94	113,9746	4,4495	0,4071
45	91	118,2573	4,2827	0,4223
46	89	122,4572	4,2000	0,4373
47	86	126,5026	4,0453	0,4518
48	83	130,4055	3,9030	0,4657

Tablica 42. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C0,6PbO

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
ĥ	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	72	4,2978	4,2978	0,0153
2	34	5,4470	1,1492	0,0195
3	17	6,0461	0,5991	0,0216
4	10	6,4352	0,3891	0,0230
5	8	6,7904	0,3553	0,0243
6	7	7,1105	0,3200	0,0254
7	6	7,3830	0,2726	0,0264
8	6	7,6678	0,2848	0,0274
9	5	7,8929	0,2251	0,0282
10	6	8,1899	0,2970	0,0292
11	6	8,4747	0,2848	0,0303
12	6	8,7595	0,2848	0,0313
13	6	9,0443	0,2848	0,0323
14	5	9,2694	0,2251	0,0331
15	6	9,5664	0,2970	0,0342
16	6	9,8512	0,2848	0,0352
17	7	10,1957	0,3445	0,0364
18	7	10,5280	0,3323	0,0376
19	8	10,9199	0,3920	0,0390
20	8	11,2997	0,3797	0,0404
21	9	11,7391	0,4394	0,0419
22	11	12,2856	0,5466	0,0439
23	14	12,9868	0,7012	0,0464
24	17	13,8304	0,8436	0,0494
25	21	14,8761	1,0457	0,0531
26	26	16,1713	1,2952	0,0578
27	34	17,8830	1,7116	0,0639
28	41	19,9146	2,0317	0,0711
29	49	22,3382	2,4236	0,0798
30	59	25,2610	2,9227	0,0902
31	69	28,6583	3,3974	0,1024
32	78	32,4707	3,8123	0,1160
33	88	36,7699	4,2992	0,1313
34	96	41,4244	4,6545	0,1479
35	103	46,3989	4,9745	0,1657
36	107	51,5266	5,1277	0,1840
37	109	56,7248	5,1982	0,2026
38	109	61,8985	5,1737	0,2211
39	109	67,0723	5,1737	0,2395
40	107	72,1266	5,0544	0,2576
41	104	77,0263	4,8997	0,2751
42	101	81,7837	4,7573	0,2921
43	97	86,3389	4,5552	0,3084
44	93	90,7043	4,3654	0,3239
45	91	94,9992	4,2949	0,3393
46	88	99,1395	4,1403	0,3541
47	86	103,1971	4,0576	0,3686
48	85	107.2194	4.0223	0.3829

Tablica 43. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C0,7PbO

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	92	5,4916	5,4916	0,0196
2	80	9,1421	3,6505	0,0327
3	67	12,1634	3,0212	0,0434
4	65	15,2242	3,0608	0,0544
5	69	18,5482	3,3240	0,0662
6	79	22,4202	3,8720	0,0801
7	91	26,8863	4,4661	0,0960
8	104	31,9816	5,0953	0,1142
9	117	37,6940	5,7124	0,1346
10	130	44,0235	6,3294	0,1572
11	138	50,6715	6,6480	0,1810
12	145	57,6396	6,9681	0,2059
13	147	64,6415	7,0019	0,2309
14	145	71,4995	6,8580	0,2554
15	140	78,0835	6,5840	0,2789
16	135	84,4302	6,3467	0,3015
17	128	90,4202	5,9900	0,3229
18	121	96,0780	5,6577	0,3431
19	113	101,3437	5,2658	0,3619
20	107	106,3492	5,0054	0,3798
21	100	111,0102	4,6610	0,3965
22	93	115,3389	4,3287	0,4119
23	87	119,3950	4,0561	0,4264
24	80	123,1066	3,7117	0,4397
25	74	126,5457	3,4391	0,4519
26	69	129,7597	3,2140	0,4634
27	65	132,7961	3,0363	0,4743
28	61	135,6426	2,8465	0,4844
29	58	138,3589	2,7163	0,4941
30	55	140,9328	2,5739	0,5033
31	52	143,3643	2,4315	0,5120
32	50	145,7131	2,3488	0,5204
33	46	147,8476	2,1345	0,5280
34	45	149,9714	2,1237	0,5356
35	42	151,9282	1,9569	0,5426
36	39	153,7427	1,8145	0,5491
37	38	155,5342	1,7915	0,5555
38	37	157,2782	1,7440	0,5617
39	35	158,9150	1,6368	0,5676
40	33	160,4569	1,5419	0,5731
41	31	161,9039	1,4470	0,5782
42	30	163,3156	1,4117	0,5833
43	29	164,6799	1,3643	0,5881
44	28	165,9967	1,3168	0,5928
45	25	167,1467	1,1500	0,5970
46	24	168,2736	1,1269	0,6010
47	22	169,2934	1,0198	0,6046
48	22	170.3376	1.0442	0.6083

Tablica 44. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C0,2PbO20Z

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μν	J/g	J/gh	α
0	0	0,0000	0,0000	0,0000
1	63	3,7606	3,7606	0,0134
2	60	6,5718	2,8112	0,0235
3	60	9,4197	2,8479	0,0336
4	55	11,9692	2,5495	0,0427
5	53	14,4604	2,4912	0,0516
6	60	17,3939	2,9335	0,0621
7	73	21,0178	3,6239	0,0751
8	88	25,3782	4,3603	0,0906
9	103	30,4505	5,0723	0,1088
10	116	36,1154	5,6649	0,1290
11	128	42,3377	6,2223	0,1512
12	137	48,9505	6,6128	0,1748
13	141	55,6921	6,7415	0,1989
14	144	62,5638	6,8717	0,2234
15	143	69,3391	6,7753	0,2476
16	138	75.8282	6.4891	0.2708
17	133	82,0800	6.2518	0.2931
18	128	88.0944	6.0145	0.3146
19	122	93,8118	5,7174	0.3350
20	115	99 1848	5 3729	0 3542
20	108	104 2255	5,0407	0,3722
21	103	109,0533	4 8278	0,3722
22	96	113 5244	4,8278	0,3875
23	90	117 7229	4,4711	0,4004
24	90	121 6367	3 0137	0,4204
25	80	121,0307	3,7197	0,4344
20	80 74	123,3830	3,7403	0,4478
21	74	120,0241	3,4371	0,4001
20	/1	132,1374	2 1212	0,4720
29	67	133,2887	3,1313	0,4832
21	63	138,2302	2,9414	0,4937
22	60	141,0414	2,8112	0,5037
32	57	143,7102	2,6689	0,5133
33	54	146,2367	2,5265	0,5223
34	51	148,6207	2,3840	0,5308
35	48	150,8624	2,2417	0,5388
36	46	153,0214	2,1589	0,5465
37	44	155,0854	2,0640	0,5539
38	43	157,1142	2,0288	0,5611
39	40	158,9761	1,8619	0,5678
40	39	160,8151	1,8389	0,5743
41	37	162,5468	1,7318	0,5805
42	36	164,2434	1,6965	0,5866
43	34	165,8327	1,5894	0,5923
44	32	167,3272	1,4944	0,5976
45	32	168,8461	1,5189	0,6030
46	31	170,3053	1,4592	0,6082
47	30	171,7170	1,4117	0,6133
48	28	173.0216	1.3046	0.6179

Tablica 45. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C0,3PbO20Z

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
ĥ	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	47	2,8055	2,8055	0,0100
2	21	3,4844	0,6789	0,0124
3	11	3,8843	0,3999	0,0139
4	9	4,2870	0,4027	0,0153
5	13	4,9529	0,6660	0,0177
6	20	5,9878	1,0349	0,0214
7	31	7,5938	1,6059	0,0271
8	46	9,9606	2,3668	0,0356
9	64	13,2184	3,2579	0,0472
10	83	17,3903	4,1719	0,0621
11	101	22,4044	5,0141	0,0800
12	115	28,0341	5,6297	0,1001
13	127	34,2089	6,1748	0,1222
14	134	40,6549	6,4460	0,1452
15	137	47,1943	6,5394	0,1686
16	135	53,5777	6,3834	0,1913
17	132	59,8065	6,2288	0,2136
18	127	65,7734	5,9670	0,2349
19	119	71,3240	5,5506	0,2547
20	113	76,6143	5,2902	0,2736
21	106	81,5600	4,9458	0,2913
22	99	86,1735	4,6135	0,3078
23	92	90,4547	4,2812	0,3231
24	87	94,5231	4,0684	0,3376
25	81	98,2945	3,7713	0,3511
26	75	101,7810	3,4865	0,3635
27	69	104,9828	3,2018	0,3749
28	65	108,0191	3,0363	0,3858
29	60	110,8059	2,7868	0,3957
30	55	113,3554	2,5495	0,4048
31	52	115,7869	2,4315	0,4135
32	49	118,0760	2,2891	0,4217
33	45	120,1631	2,0870	0,4292
34	42	122,1199	1,9569	0,4361
35	40	123,9941	1,8742	0,4428
36	37	125,7137	1,7195	0,4490
37	34	127,2908	1,5772	0,4546
38	32	128,7852	1,4944	0,4599
39	30	130,1848	1,3995	0,4649
40	28	131,4893	1,3046	0,4696
41	27	132,7587	1,2693	0,4741
42	25	133,9209	1,1622	0,4783
43	23	134,9881	1,0672	0,4821
44	22	136,0201	1,0320	0,4858
45	22	137,0644	1,0443	0,4895
46	20	137,9892	0,9249	0,4928
47	18	138,8191	0,8299	0,4958
48	17	139,6138	0,7947	0,4986

Tablica 46. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C0,4PbO20Z

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
ĥ	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	47	2,8055	2,8055	0,0100
2	24	3,6635	0,8580	0,0131
3	17	4,3848	0,7213	0,0157
4	13	4,9529	0,5681	0,0177
5	14	5,6297	0,6767	0,0201
6	17	6,4733	0,8436	0,0231
7	21	7,5190	1,0457	0,0269
8	25	8,7545	1,2355	0,0313
9	32	10,3590	1,6045	0.0370
10	40	12,3554	1,9964	0,0441
11	47	14,6719	2,3165	0,0524
12	57	17,4996	2,8278	0,0625
13	68	20,8618	3,3621	0,0745
14	79	24,7460	3,8843	0,0884
15	92	29,2718	4,5258	0,1045
16	103	34,2952	5,0234	0,1225
17	115	39,9005	5,6052	0,1425
18	124	45,8962	5,9958	0,1639
19	130	52,1401	6,2439	0,1862
20	133	58,4896	6,3496	0,2089
21	133	64,8025	6,3129	0,2314
22	131	70,9961	6,1935	0,2536
23	128	77,0350	6,0389	0,2751
24	123	82,8121	5,7771	0,2958
25	119	88,4116	5,5995	0,3158
26	113	93,7018	5,2902	0,3346
27	108	98,7669	5,0651	0,3527
28	102	103,5351	4,7681	0,3698
29	97	108,0781	4,5430	0,3860
30	90	112,2644	4,1863	0,4009
31	85	116,2378	3,9734	0,4151
32	79	119,9142	3,6764	0,4283
33	74	123,3656	3,4513	0,4406
34	69	126,5795	3,2140	0,4521
35	65	129,6159	3,0363	0,4629
36	62	132,5221	2,9062	0,4733
37	58	135,2262	2,7041	0,4830
38	54	137,7404	2,5142	0,4919
39	52	140,1841	2,4437	0,5007
40	49	142,4733	2,2891	0,5088
41	47	144,6797	2,2064	0,5167
42	45	146,7912	2,1115	0,5243
43	42	148,7481	1,9569	0,5312
44	41	150,6819	1,9339	0,5381
45	38	152,4489	1,7670	0,5445
46	37	154,1929	1,7440	0,5507
47	35	155,8297	1,6368	0,5565
48	33	157,3717	1,5419	0,5620

Tablica 47. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C0,5PbO20Z

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
ĥ	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	37	2,2086	2,2086	0,0079
2	16	2,7113	0,5027	0,0097
3	9	3,0529	0,3416	0,0109
4	8	3,4204	0,3675	0,0122
5	8	3,8001	0,3797	0,0136
6	9	4,2395	0,4394	0,0151
7	11	4,7861	0,5466	0,0171
8	16	5,6067	0,8206	0,0200
9	20	6,6049	0,9982	0,0236
10	25	7,8527	1,2478	0,0280
11	31	9,3974	1,5448	0,0336
12	41	11,4658	2,0683	0,0409
13	52	14,0685	2,6027	0,0502
14	65	17,3127	3,2442	0,0618
15	78	21,1739	3,8612	0,0756
16	91	25,6522	4,4783	0,0916
17	104	30,7475	5,0953	0,1098
18	114	36,2809	5,5333	0,1296
19	121	42,1098	5,8289	0,1504
20	126	48,1515	6,0418	0,1720
21	126	54,1322	5,9806	0,1933
22	125	60,0531	5,9210	0,2145
23	121	65,7475	5,6944	0,2348
24	117	71,2521	5,5045	0,2545
25	111	76,4474	5,1953	0,2730
26	106	81,4176	4,9702	0,2908
27	100	86,0908	4,6732	0,3075
28	94	90,4792	4,3884	0,3231
29	89	94,6425	4,1633	0,3380
30	85	98,6281	3,9857	0,3522
31	78	102,2449	3,6167	0,3652
32	73	105,6487	3,4038	0,3773
33	68	108,8152	3,1665	0,3886
34	65	111,8638	3,0486	0,3995
35	60	114,6506	2,7868	0,4095
36	57	117,3195	2,6689	0,4190
37	53	119,7862	2,4668	0,4278
38	50	122,1228	2,3366	0,4362
39	47	124,3170	2,1942	0,4440
40	45	126,4285	2,1115	0,4515
41	43	128,4451	2,0166	0,4587
42	41	130,3667	1,9216	0,4656
43	38	132,1337	1,7670	0,4719
44	36	133,8180	1,6843	0,4779
45	34	135,4074	1,5894	0,4836
46	33	136,9615	1,5541	0,4891
47	32	138,4682	1,5067	0,4945
48	29	139,8080	1,3398	0,4993

Tablica 48. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C0,6PbO20Z

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
ĥ	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	44	2,6264	2,6264	0,0094
2	26	3,6405	1,0140	0,0130
3	18	4,3970	0,7566	0,0157
4	14	5,0126	0,6156	0,0179
5	13	5,6175	0,6048	0,0201
6	15	6,3539	0,7364	0,0227
7	17	7,1853	0,8314	0,0257
8	20	8,1712	0,9860	0,0292
9	25	9,4190	1,2478	0,0336
10	32	11,0235	1,6045	0,0394
11	40	13,0199	1,9964	0,0465
12	50	15,5154	2,4955	0,0554
13	61	18,5453	3,0299	0,0662
14	72	22,0973	3,5520	0,0789
15	81	26,0521	3,9547	0,0930
16	90	30,4340	4,3819	0,1087
17	98	35,1834	4,7494	0,1257
18	105	40,2528	5,0695	0,1438
19	110	45,5352	5,2823	0,1626
20	113	50,9355	5,4003	0,1819
21	115	56,4184	5,4830	0,2015
22	116	61,9366	5,5182	0,2212
23	116	67,4426	5,5060	0,2409
24	113	72,7696	5,3269	0,2599
25	112	78,0735	5,3039	0,2788
26	109	83,2105	5,1370	0,2972
27	104	88,0858	4,8753	0,3146
28	102	92,9028	4,8170	0,3318
29	98	97,5055	4,6027	0,3482
30	94	101,9184	4,4128	0,3640
31	88	106,0220	4,1036	0,3786
32	84	109,9602	3,9382	0,3927
33	80	113,7085	3,7483	0,4061
34	76	117,2670	3,5585	0,4188
35	72	120,6356	3,3686	0,4308
36	68	123,8143	3,1787	0,4422
37	65	126,8629	3,0486	0,4531
38	62	129,7691	2,9062	0,4635
39	60	132,5926	2,8235	0,4735
40	56	135,2017	2,6092	0,4829
41	53	137,6807	2,4790	0,4917
42	51	140,0770	2,3963	0,5003
43	48	142,3186	2,2417	0,5083
44	46	144,4776	2,1590	0,5160
45	44	146,5416	2,0640	0,5234
46	42	148,5107	1,9691	0,5304
47	40	150,3849	1,8742	0,5371
48	39	152.2238	1.8389	0.5437

Tablica 49. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C0,7PbO20Z

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	48	2,8652	2,8652	0,0102
2	28	3,9497	1,0845	0,0141
3	25	5,0997	1,1500	0,0182
4	28	6,4654	1,3657	0,0231
5	46	8,8688	2,4035	0,0317
6	70	12,4848	3,6160	0,0446
7	95	17,2997	4,8149	0,0618
8	120	23,3012	6,0015	0,0832
9	143	30,3700	7,0688	0,1085
10	162	38,2917	7,9217	0,1368
11	174	46,6974	8,4057	0,1668
12	179	55,2548	8,5574	0,1973
13	181	63,8705	8,6157	0,2281
14	179	72,3424	8,4719	0,2584
15	173	80,4805	8,1382	0,2874
16	167	88,3339	7,8534	0,3155
17	160	95,8428	7,5089	0,3423
18	153	103,0194	7,1766	0,3679
19	144	109,7444	6,7250	0,3919
20	135	116,0422	6,2978	0,4144
21	127	116,1070	5,9303	0,4356
22	119	122,4170	5,5506	0,4554
23	110	128,7271	5,1112	0,4737
24	103	135,0372	4,8034	0,4908
25	98	141,3472	4,5905	0,5072
26	92	147,6573	4,2935	0,5226
27	87	153,9673	4,0684	0,5371
28	83	160,2774	3,8907	0,5510
29	79	166,5874	3,7009	0,5642
30	75	172,8975	3,5110	0,5768
31	71	179,2075	3,3212	0,5886
32	68	185,5176	3,1910	0,6000
33	64	191,8276	2,9889	0,6107
34	62	198,1377	2,9184	0,6211
35	59	204,4477	2,7638	0,6310
36	56	210,7578	2,6214	0,6403
37	54	217,0678	2,5387	0,6494
38	51	223,3779	2,3841	0,6579
39	50	229,6879	2,3611	0,6664
40	47	235,9980	2,1942	0,6742
41	47	242,3081	2,2309	0,6822
42	44	248,6181	2,0518	0,6895
43	43	254,9282	2,0288	0,6967
44	41	261,2382	1,9216	0,7036
45	40	267,5483	1,8864	0,7103
46	39	273,8583	1,8389	0,7169
47	38	280,1684	1,7915	0,7233
48	36	286,4784	1,6843	0,7293

Tablica 50. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnja hidratacije u funkciji vremena hidratacije za uzorak C0,5PbCrO₄

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
ĥ	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	35	2,0892	2,0892	0,0075
2	31	3,5117	1,4225	0,0125
3	32	5,0428	1,5311	0,0180
4	34	6,6811	1,6383	0,0239
5	41	8,7128	2,0317	0,0311
6	52	11,3155	2,6027	0,0404
7	67	14,6790	3,3636	0,0524
8	83	18,8143	4,1352	0,0672
9	100	23,7687	4,9544	0,0849
10	119	29,6494	5,8807	0,1059
11	135	36,2528	6,6035	0,1295
12	148	43,4366	7,1838	0,1551
13	158	51,0584	7,6218	0,1824
14	164	58,9161	7,8577	0,2104
15	168	66,9392	8,0231	0,2391
16	168	74,9134	7,9742	0,2675
17	166	82,7682	7,8548	0,2956
18	163	90,4684	7,7002	0,3231
19	157	97,8471	7,3787	0,3495
20	152	105,0007	7,1536	0,3750
21	145	111,7977	6,7969	0,3993
22	139	118,3220	6,5243	0,4226
23	133	124,5615	6,2395	0,4449
24	128	130,5760	6,0144	0,4663
25	120	136,1740	5,5981	0,4863
26	113	141,4520	5,2780	0,5052
27	108	146,5172	5,0652	0,5233
28	101	151,2256	4,7084	0,5401
29	96	155,7212	4,4956	0,5561
30	91	159,9794	4,2582	0,5714
31	87	164,0600	4,0806	0,5859
32	83	167,9507	3,8907	0,5998
33	79	171,6516	3,7009	0,6130
34	76	175,2223	3,5707	0,6258
35	72	178,5909	3,3686	0,6378
36	70	181,8890	3,2981	0,6496
37	68	185,0922	3,2032	0,6610
38	64	188,0811	2,9889	0,6717
39	62	190,9995	2,9184	0,6821
40	60	193,8230	2,8235	0,6922
41	59	196,6112	2,7882	0,7022
42	56	199,2326	2,6214	0,7115
43	54	201,7713	2,5387	0,7206
44	53	204,2747	2,5034	0,7296
45	52	206,7307	2,4560	0,7383
46	50	209,0795	2,3488	0,7467
47	48	211,3334	2,2539	0,7548
48	47	213.5520	2.2186	0.7627

Tablica 51. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnja hidratacije u funkciji vremena hidratacije za uzorak C1,0PbCrO₄

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	а
0	0	0,0000	0,0000	0,0000
1	56	3,3427	3,3427	0,0119
2	32	4,5682	1,2255	0,0163
3	23	5,5499	0,9817	0,0198
4	19	6,4028	0,8529	0,0229
5	18	7,2450	0,8422	0,0259
6	19	8,1590	0,9141	0,0291
7	21	9,1802	1,0212	0,0328
8	27	10,5352	1,3549	0,0376
9	38	12,4733	1,9382	0,0445
10	57	15,4112	2,9378	0,0550
11	80	19,4896	4,0784	0,0696
12	106	24,8388	5,3492	0,0887
13	132	31,4221	6,5833	0,1122
14	154	39,0008	7,5786	0,1393
15	172	47,3849	8,3841	0,1692
16	181	56,0862	8,7013	0,2003
17	186	64,9759	8,8897	0,2321
18	187	73,8641	8,8883	0,2638
19	183	82,5014	8,6373	0,2946
20	176	90,7697	8,2683	0,3242
21	169	98,7058	7,9361	0,3525
22	162	106,3096	7,6038	0,3797
23	155	113,5812	7,2716	0,4056
24	147	120,4608	6,8796	0,4302
25	137	126,8413	6,3805	0,4530
26	127	132,7472	5,9058	0,4741
27	118	138,2381	5,4909	0,4937
28	110	143,3615	5,1234	0,5120
29	104	148,2245	4,8631	0,5294
30	98	152,8028	4,5782	0,5457
31	92	157,0962	4,2935	0,5611
32	88	161,2243	4,1280	0,5758
33	84	165,1625	3,9382	0,5899
34	81	168,9705	3,8080	0,6035
35	78	172,6361	3,6656	0,6166
36	75	176,1593	3,5232	0,6291
37	72	179,5402	3,3808	0,6412
38	69	182,7786	3,2384	0,6528
39	66	185,8747	3,0961	0,6638
40	65	188,9477	3,0730	0,6748
41	62	191,8539	2,9062	0,6852
42	60	194,6773	2,8235	0,6953
43	58	197,4059	2,7285	0,7050
44	56	200,0395	2,6336	0,7144
45	55	202,6379	2,5984	0,7237
46	52	205,0694	2,4315	0,7324
47	52	207,5376	2,4682	0,7412
48	50	209,8864	2,3488	0,7496

Tablica 52. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnja hidratacije u funkciji vremena hidratacije za uzorak C1,5PbCrO₄

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	а
0	0	0,0000	0,0000	0,0000
1	58	3,4621	3,4621	0,0124
2	40	5,1407	1,6786	0,0184
3	33	6,6214	1,4808	0,0236
4	31	8,0684	1,4470	0,0288
5	29	9,4205	1,3520	0,0336
6	31	10,9163	1,4959	0,0390
7	36	12,6862	1,7699	0,0453
8	45	14,9322	2,2460	0,0533
9	59	17,9038	2,9716	0,0639
10	77	21,7787	3,8749	0,0778
11	100	26,8065	5,0277	0,0957
12	124	32,9856	6,1791	0,1178
13	147	40,2442	7,2586	0,1437
14	167	48,4155	8,1712	0,1729
15	180	57,1182	8,7027	0,2040
16	188	66,1395	9,0213	0,2362
17	191	75,2421	9,1026	0,2687
18	191	84,3080	9.0659	0,3011
19	187	93,1351	8,8271	0,3326
20	180	101,5933	8,4582	0,3628
21	174	109,7789	8.1856	0.3921
22	167	117.6201	7.8411	0.4201
23	159	125.0693	7.4492	0.4467
24	151	132,1387	7.0695	0.4719
25	142	138.7688	6.6301	0.4956
26	133	144.9717	6.2029	0.5178
27	124	150.7474	5.7757	0.5384
28	118	156.2749	5.5276	0.5581
29	111	161,4580	5,1831	0.5766
30	106	166.4282	4.9702	0.5944
31	99	171.0417	4.6135	0.6109
32	95	175,5020	4.4603	0.6268
33	93	179.8919	4.3898	0.6425
34	89	184,0674	4,1755	0,6574
35	85	188,0530	3,9857	0,6716
36	83	191,9682	3,9152	0,6856
37	79	195.6691	3.7009	0.6988
38	78	199,3592	3,6901	0,7120
39	75	202.8824	3,5232	0.7246
40	73	206,3229	3,4405	0,7369
41	70	209,6088	3.2859	0.7486
42	68	212,8120	3.2032	0.7600
43	67	215,9800	3,1680	0,7714
44	65	219.0408	3.0608	0.7823
45	63	222,0066	2,9659	0,7929
46	61	224.8776	2.8710	0.8031
47	59	227,6536	2,7760	0.8130
48	59	230,4541	2.8005	0.8231

Tablica 53. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnja hidratacije u funkciji vremena hidratacije za uzorak C2,0PbCrO₄

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	а
0	0	0,0000	0,0000	0,0000
1	60	3,5815	3,5815	0,0128
2	41	5,2953	1,7138	0,0189
3	32	6,7041	1,4089	0,0239
4	29	8,0440	1,3398	0,0287
5	27	9,3011	1,2571	0,0332
6	26	10,5229	1,2219	0,0376
7	27	11,8167	1,2938	0,0422
8	30	13,2774	1,4606	0,0474
9	36	15,0595	1,7821	0,0538
10	46	17,3652	2,3057	0,0620
11	63	20,5633	3,1982	0,0734
12	86	24,9265	4,3632	0,0890
13	111	30,5009	5,5743	0,1089
14	137	37,3215	6,8206	0,1333
15	160	45,1972	7,8757	0,1614
16	176	53,7467	8,5495	0,1920
17	186	62,6975	8,9508	0,2239
18	191	71,8246	9,1270	0,2565
19	190	80,8308	9,0062	0,2887
20	187	89,6701	8,8394	0,3203
21	181	98,1880	8,5179	0,3507
22	174	106,3614	8,1734	0,3799
23	166	114,1429	7,7815	0,4077
24	158	121,5446	7,4017	0,4341
25	150	128,5666	7,0220	0,4592
26	141	135,1492	6,5826	0,4827
27	133	141,3643	6,2151	0,5049
28	125	147,1997	5,8354	0,5257
29	118	152,7150	5,5153	0,5454
30	111	157,8981	5,1831	0,5639
31	106	162,8683	4,9702	0,5817
32	100	167,5415	4,6732	0,5984
33	96	172,0493	4,5078	0,6145
34	92	176,3672	4,3179	0,6299
35	90	180,6146	4,2474	0,6451
36	86	184,6477	4,0331	0,6595
37	84	188,6104	3,9626	0,6736
38	81	192,4184	3,8080	0,6872
39	78	196,0840	3,6656	0,7003
40	75	199,6073	3,5232	0,7129
41	74	203,1075	3,5002	0,7254
42	71	206,4408	3,3334	0,7373
43	70	209,7512	3,3104	0,7491
44	67	212,8947	3,1435	0,7603
45	65	215,9555	3,0608	0,7713
46	63	218,9214	2,9659	0,7819
47	61	221,7923	2,8709	0,7921
48	59	224,5683	2,7760	0,8020

Tablica 54. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnja hidratacije u funkciji vremena hidratacije za uzorak C2,5PbCrO₄

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	61	3,6412	3,6412	0,0130
2	38	5,1637	1,5225	0,0184
3	28	6,3704	1,2068	0,0228
4	24	7,4607	1,0903	0,0266
5	21	8,4208	0,9601	0,0301
6	20	9,3579	0,9371	0,0334
7	22	10,4266	1,0687	0,0372
8	23	11,5305	1,1039	0,0412
9	26	12,8013	1,2708	0,0457
10	30	14,2742	1,4729	0,0510
11	39	16,2353	1,9612	0,0580
12	52	18,8625	2,6271	0,0674
13	68	22,2857	3,4233	0,0796
14	89	26,7669	4,4812	0,0956
15	112	32,3642	5,5973	0,1156
16	132	38,8742	6,5100	0,1388
17	151	46,2738	7,3996	0,1653
18	166	54,3364	8,0626	0,1941
19	176	62,8126	8,4762	0,2243
20	179	71,3456	8,5330	0,2548
21	179	79,8419	8,4963	0,2851
22	173	87,9801	8,1382	0,3142
23	168	95,8931	7,9131	0,3425
24	162	103,5092	7,6160	0,3697
25	154	110,7211	7,2119	0,3954
26	147	117,6129	6,8918	0,4200
27	139	124,1128	6,4999	0,4433
28	130	130,1733	6,0605	0,4649
29	123	135,9259	5,7527	0,4854
30	115	141,2866	5,3607	0,5046
31	108	146,3273	5,0407	0,5226
32	100	150,9760	4,6487	0,5392
33	96	155,4838	4,5078	0,5553
34	90	159,6824	4,1985	0,5703
35	86	163,7155	4,0331	0,5847
36	83	167,6184	3,9030	0,5986
37	80	171,3790	3,7606	0,6121
38	77	174,9972	3,6181	0,6250
39	75	178,5326	3,5354	0,6376
40	72	181,9135	3,3809	0,6497
41	69	185,1519	3,2384	0,6613
42	67	188,3076	3,1557	0,6725
43	64	191,3087	3,0011	0,6832
44	63	194,2868	2,9781	0,6939
45	61	197,1578	2,8709	0,7041
46	59	199,9338	2,7760	0,7140
47	56	202,5552	2,6214	0,7234
48	55	205,1535	2.5984	0.7327

Tablica 55. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnja hidratacije u funkciji vremena hidratacije za uzorak C3,0PbCrO₄

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
ĥ	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	72	4,2978	4,2978	0,0153
2	45	6,1036	1,8058	0,0218
3	40	7,9411	1,8375	0,0284
4	54	10,6754	2,7343	0,0381
5	74	14,4324	3,7570	0,0515
6	94	19,1386	4,7063	0,0684
7	112	24,6748	5,5362	0,0881
8	125	30,7670	6,0921	0,1099
9	136	37,3567	6,5898	0,1334
10	141	44,1105	6,7538	0,1575
11	144	50,9822	6,8717	0,1821
12	143	57,7575	6,7753	0,2063
13	140	64,3660	6,6085	0,2299
14	135	70,7127	6,3467	0,2525
15	128	76,7027	5,9900	0,2739
16	123	82,4798	5,7771	0,2946
17	116	87,9002	5,4204	0,3139
18	109	92,9884	5,0882	0,3321
19	102	97,7443	4,7559	0,3491
20	97	102,2873	4,5430	0,3653
21	91	106,5333	4,2460	0,3805
22	85	110,4945	3,9612	0,3946
23	80	114,2306	3,7361	0,4080
24	76	117,7891	3,5585	0,4207
25	72	121,1577	3,3686	0,4327
26	67	124,2767	3,1191	0,4438
27	64	127,2779	3,0011	0,4546
28	62	130,1963	2,9184	0,4650
29	59	132,9600	2,7638	0,4749
30	56	135,5814	2,6214	0,4842
31	54	138,1201	2,5387	0,4933
32	52	140,5639	2,4438	0,5020
33	48	142,7933	2,2294	0,5100
34	47	145,0120	2,2187	0,5179
35	44	147,0638	2,0518	0,5252
36	43	149,0925	2,0288	0,5325
37	40	150,9545	1,8620	0,5391
38	40	152,8531	1,8986	0,5459
39	37	154,5726	1,7195	0,5520
40	37	156,3289	1,7562	0,5583
41	35	157,9657	1,6368	0,5642
42	33	159,5076	1,5419	0,5697
43	32	161,0143	1,5067	0,5751
44	31	162,4735	1,4592	0,5803
45	30	163,8852	1,4117	0,5853
46	29	165,2495	1,3643	0,5902
47	28	166,5663	1,3168	0,5949
48	27	167.8356	1.2693	0.5994

Tablica 56. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnja hidratacije u funkciji vremena hidratacije za uzorak C0,5PbCrO₄(20Z)

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
ĥ	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	70	4,1784	4,1784	0,0149
2	39	5,6505	1,4721	0,0202
3	29	6,9048	1,2542	0,0247
4	30	8,3410	1,4362	0,0298
5	39	10,3022	1,9612	0,0368
6	56	13,1681	2,8659	0,0470
7	78	17,1393	3,9713	0,0612
8	98	22,0355	4,8961	0,0787
9	114	27,6421	5,6067	0,0987
10	127	33,8292	6,1870	0,1208
11	136	40,3945	6,5653	0,1443
12	141	47,1483	6,7538	0,1684
13	142	53,9006	6,7523	0,1925
14	140	60,5213	6,6207	0,2161
15	137	66,9874	6,4661	0,2392
16	132	73,1917	6,2043	0,2614
17	126	79,0990	5,9073	0,2825
18	119	84,6618	5,5628	0,3024
19	113	89,9520	5,2902	0,3213
20	106	94,8978	4,9458	0,3389
21	100	99,5710	4,6732	0,3556
22	94	103,9594	4,3884	0,3713
23	88	108,0630	4,1036	0,3859
24	82	111,8818	3,8188	0,3996
25	78	115,5352	3,6534	0,4126
26	72	118,8793	3,3442	0,4246
27	69	122,1178	3,2384	0,4361
28	65	125,1541	3,0363	0,4470
29	61	128,0006	2,8465	0,4571
30	59	130,7766	2,7760	0,4671
31	57	133,4577	2,6811	0,4766
32	53	135,9245	2,4668	0,4854
33	51	138,3208	2,3963	0,4940
34	48	140,5624	2,2417	0,5020
35	46	142,7214	2,1590	0,5097
36	43	144,7257	2,0043	0,5169
37	42	146,7070	1,9813	0,5240
38	42	148,7006	1,9936	0,5311
39	39	150,5151	1,8145	0,5376
40	38	152,3065	1,7915	0,5440
41	37	154,0505	1,7440	0,5502
42	35	155,6874	1,6368	0,5560
43	34	157,2889	1,6016	0,5617
44	33	158,8431	1,5542	0,5673
45	33	160,4095	1,5664	0,5729
46	31	161,8564	1,4470	0,5781
47	30	163,2682	1,4117	0,5831
48	29	164.6324	1.3643	0.5880

Tablica 57. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnja hidratacije u funkciji vremena hidratacije za uzorak C1,0PbCrO₄(20Z)

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	50	2,9846	2,9846	0,0107
2	27	3,9849	1,0004	0,0142
3	18	4,7293	0,7443	0,0169
4	16	5,4643	0,7350	0,0195
5	15	6,1640	0,6998	0,0220
6	23	7,3535	1,1895	0,0263
7	33	9,0422	1,6886	0,0323
8	48	11,5039	2,4617	0,0411
9	66	14,8567	3,3528	0,0531
10	84	19,0638	4,2072	0,0681
11	100	24,0060	4,9422	0,0857
12	113	29,5285	5,5225	0,1055
13	123	35,4890	5,9605	0,1267
14	129	41,6854	6,1964	0,1489
15	131	47,9279	6,2424	0,1712
16	130	54,0861	6,1583	0,1932
17	128	60,1373	6,0511	0,2148
18	125	66,0338	5,8965	0,2358
19	119	71,6088	5,5750	0,2557
20	115	77,0184	5,4096	0,2751
21	109	82,1188	5,1004	0,2933
22	103	86,9344	4,8156	0,3105
23	95	91,3458	4,4114	0,3262
24	91	95,6162	4,2704	0,3415
25	86	99,6371	4,0209	0,3558
26	79	103,3013	3,6642	0,3689
27	75	106,8123	3,5110	0,3815
28	71	110,1335	3,3211	0,3933
29	66	113,2051	3,0716	0,4043
30	61	116,0393	2,8343	0,4144
31	59	118,8153	2,7760	0,4243
32	55	121,3770	2,5617	0,4335
33	52	123,8086	2,4315	0,4422
34	49	126,0977	2,2891	0,4503
35	47	128,3041	2,2064	0,4582
36	44	130,3559	2,0518	0,4656
37	42	132,3250	1,9691	0,4726
38	41	134,2589	1,9339	0,4795
<u> </u>	39	136,0856	1,826/	0,4860
40	38	13/,8//0	1,/915	0,4924
41	<u> </u>	139,5613	1,6843	0,4984
42	<u> </u>	141,2104	1,0491	0,5043
43	<u> </u>	142,8120	1,0010	0,5100
44	<u> </u>	144,3004	1,4944	0,5154
45	21	143,/030	1,4392	0,5206
40	20	147,2371	1,4/14	0,5207
47	23	140,3091	1,3521	0,5357
40	<i>41</i>	147.0402	1.43/1	0.3332

Tablica 58. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnja hidratacije u funkciji vremena hidratacije za uzorak C1,5PbCrO₄(20Z)

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	52	3,1040	3,1040	0,0111
2	27	4,0799	0,9759	0,0146
3	18	4,8242	0,7443	0,0172
4	16	5,5592	0,7350	0,0199
5	15	6,2590	0,6998	0,0224
6	16	7,0306	0,7717	0,0251
7	21	8,0885	1,0579	0,0289
8	33	9,8016	1,7131	0,0350
9	48	12,2633	2,4617	0,0438
10	65	15,5564	3,2931	0,0556
11	82	19,6564	4,1000	0,0702
12	99	24,5634	4,9069	0,0877
13	112	30,0384	5,4751	0,1073
14	121	35,8918	5,8533	0,1282
15	125	41,8739	5,9821	0,1495
16	128	47,9861	6,1123	0,1714
17	128	54,0617	6,0756	0,1931
18	125	59,9582	5,8965	0,2141
19	123	65,7720	5,8138	0,2349
20	118	71,3118	5,5398	0,2547
21	112	76,5546	5,2428	0,2734
22	108	81,6319	5,0774	0,2915
23	102	86,4000	4,7681	0,3086
24	97	90,9431	4,5430	0,3248
25	92	95,2488	4,3057	0,3402
26	87	99,3171	4,0684	0,3547
27	81	103,0885	3,7713	0,3682
28	78	106,7541	3,6656	0,3813
29	72	110,0982	3,3442	0,3932
30	68	113,2770	3,1787	0,4046
31	64	116,2659	2,9889	0,4152
32	60	119,0649	2,7990	0,4252
33	56	121,6741	2,6092	0,4346
34	54	124,2127	2,5387	0,4436
35	51	126,5968	2,3841	0,4521
36	48	128,8385	2,2417	0,4601
37	46	130,9974	2,1590	0,4678
38	44	133,0615	2,0640	0,4752
39	41	134,9708	1,9094	0,4820
40	41	136,9169	1,9461	0,4890
41	41	138,8630	1,9461	0,4959
42	42	140,8688	2,0058	0,5031
43	43	142,9220	2,0532	0,5104
44	41	144,8437	1,9216	0,5173
45	41	146,7897	1,9461	0,5242
46	40	148,6761	1,8864	0,5310
47	39	150,5151	1,8389	0,5376
48	39	152,3662	1,8512	0,5442

Tablica 59. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnja hidratacije u funkciji vremena hidratacije za uzorak C2,0PbCrO₄(20Z)

Vriieme	Termonapon	Toplina hidr.	Brzina hidr.	Stupani hidr.
h	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	67	3,9993	3,9993	0,0143
2	45	5,8663	1,8670	0,0210
3	35	7,4053	1,5390	0,0264
4	31	8,8279	1,4225	0,0315
5	31	10,2993	1,4714	0,0368
6	36	12,0692	1,7699	0,0431
7	47	14,4345	2,3654	0,0516
8	67	17,8592	3,4247	0,0638
9	90	22,4123	4,5531	0,0800
10	115	28,1765	5,7642	0,1006
11	138	35,0079	6,8314	0,1250
12	155	42,5729	7,5650	0,1520
13	165	50,5270	7,9541	0,1805
14	169	58,5975	8,0706	0,2093
15	168	66,5595	7,9620	0,2377
16	164	74,2949	7,7354	0,2653
17	159	81,7808	7,4859	0,2921
18	151	88,8503	7,0695	0,3173
19	143	95,5400	6,6898	0,3412
20	135	101,8500	6,3100	0,3638
21	128	107,8400	5,9900	0,3851
22	119	113,3784	5,5384	0,4049
23	112	118,6089	5,2305	0,4236
24	105	123,5072	4,8983	0,4411
25	99	128,1330	4,6257	0,4576
26	92	132,4142	4,2812	0,4729
27	87	136,4826	4,0684	0,4874
28	83	140,3733	3,8907	0,5013
29	78	144,0145	3,6412	0,5143
30	75	147,5377	3,5232	0,5269
31	71	150,8588	3,3212	0,5388
32	68	154,0498	3,1910	0,5502
33	65	157,0984	3,0486	0,5611
34	63	160,0642	2,9659	0,5717
35	62	162,9949	2,9306	0,5821
36	59	165,7587	2,7638	0,5920
37	58	168,4994	2,7408	0,6018
38	55	171,0734	2,5/39	0,6110
<u> </u>	54	1/3,6243	2,5509	0,6201
40	52	170,0080	2,4457	0,6288
41	<u> </u>	1/8,4/65	2,4085	0,03/4
42	49	180,///9	2,3014	0,6456
43	4/	102,9843	2,2004	0,0000
44	4/	103,2132	2,2309	0,0015
45	45	10/,320/	2,1113	0,0090
40	40	107,3432	2,0100	0,0702
47	42	171,3243	1,7013	0,0000
40	40	17.7.170/	1.0/42	し、いういけ

Tablica 60. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnja hidratacije u funkciji vremena hidratacije za uzorak C2,5PbCrO₄(20Z)

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	73	4,3575	4,3575	0,0156
2	54	6,6883	2,3308	0,0239
3	46	8,7739	2,0856	0,0313
4	42	10,7186	1,9446	0,0383
5	42	12,7121	1,9935	0,0454
6	48	15,0638	2,3517	0,0538
7	63	18,2375	3,1737	0,0651
8	82	22,3620	4,1245	0,0799
9	107	27,7464	5,3845	0,0991
10	133	34,3772	6,6308	0,1228
11	155	42,0033	7,6261	0,1500
12	170	50,2558	8,2525	0,1795
13	176	58,6831	8,4273	0,2096
14	177	67,0967	8,4136	0,2396
15	174	75,3190	8,2223	0,2690
16	168	83,2199	7,9008	0,2972
17	162	90,8359	7,6160	0,3244
18	155	98,1075	7,2716	0,3504
19	147	104,9871	6,8796	0,3750
20	139	111,4870	6,4999	0,3982
21	131	117,6071	6,1202	0,4200
22	124	123,4073	5,8001	0,4407
23	116	128,8155	5,4082	0,4601
24	111	134,0230	5,2075	0,4787
25	103	138,8141	4,7911	0,4958
26	98	143,4046	4,5905	0,5122
27	93	147,7577	4,3531	0,5277
28	89	151,9333	4,1755	0,5426
29	85	155,9189	3,9857	0,5569
30	81	159,7147	3,7958	0,5704
31	79	163,4400	3,7253	0,5837
32	75	166,9511	3,5110	0,5963
33	73	170,3916	3,4405	0,6085
34	71	173,7372	3,3456	0,6205
35	69	176,9878	3,2507	0,6321
36	67	180,1436	3,1557	0,6434
37	64	183,1447	3,0011	0,6541
38	63	186,1228	2,9781	0,6647
39	62	189,0534	2,9306	0,6752
40	60	<u>19</u> 1,8769	2,8235	0,6853
41	59	194,6651	2,7882	0,6952
42	57	197,3462	2,6811	0,7048
43	56	199,9920	2,6458	0,7143
44	55	202,5904	2,5984	0,7235
45	54	205,1413	2,5509	0,7326
46	52	207,5851	2,4437	0,7414
47	51	209,9936	2,4085	0,7500
48	50	212,3546	2,3610	0.7584

Tablica 61. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnja hidratacije u funkciji vremena hidratacije za uzorak C3,0PbCrO₄(20Z)

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	а
0	0	0,0000	0,0000	0,0000
1	110	6,5661	6,5661	0,0235
2	53	8,3848	1,8188	0,0299
3	49	10,6617	2,2769	0,0381
4	68	14,1217	3,4599	0,0504
5	93	18,8416	4,7199	0,0673
6	117	24,6885	5,8469	0,0882
7	134	31,2567	6,5682	0,1116
8	141	38,0349	6,7782	0,1358
9	144	44,9066	6,8717	0,1604
10	141	51,5626	6,6559	0,1842
11	136	57,9567	6,3942	0,2070
12	130	64,0539	6,0972	0,2288
13	124	69,8663	5,8124	0,2495
14	116	75,2744	5,4082	0,2688
15	110	80,4223	5,1478	0,2872
16	104	85,2853	4,8630	0,3046
17	96	89,7442	4,4589	0,3205
18	90	93,9427	4,1985	0,3355
19	84	97,8565	3,9137	0,3495
20	78	101,4854	3,6289	0,3624
21	72	104,8296	3,3442	0,3744
22	68	108,0083	3,1787	0,3857
23	64	110,9972	2,9889	0,3964
24	60	113,7962	2,7990	0,4064
25	56	116,4054	2,6092	0,4157
26	54	118,9441	2,5387	0,4248
27	52	121,3878	2,4437	0,4335
28	49	123,6770	2,2891	0,4417
29	48	125,9431	2,2661	0,4498
30	45	128,0423	2,0993	0,4573
31	43	130,0589	2,0166	0,4645
32	41	131,9805	1,9216	0,4714
33	40	133,8669	1,8864	0,4781
34	36	135,5268	1,6599	0,4840
35	36	137,2355	1,7088	0,4901
36	33	138,7652	1,5297	0,4956
37	32	140,2719	1,5067	0,5010
38	31	141,7311	1,4592	0,5062
39	28	143,0234	1,2923	0,5108
40	28	144,3525	1,3290	0,5155
41	27	145,6218	1,2693	0,5201
42	24	146,7243	1,1025	0,5240
43	24	147,8635	1,1392	0,5281
44	24	149,0026	1,1392	0,5322
45	22	150,0224	1,0198	0,5358
46	21	151,0070	0,9846	0,5393
47	20	151,9441	0,9371	0,5427
48	19	152,8337	0.8896	0,5458

Tablica 62. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C1,0ABK

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	а
0	0	0,0000	0,0000	0,0000
1	149	8,8940	8,8940	0,0318
2	72	11,3701	2,4761	0,0406
3	67	14,4892	3,1191	0,0517
4	92	19,1617	4,6725	0,0684
5	120	25,1998	6,0382	0,0900
6	137	31,9104	6,7106	0,1140
7	141	38,6520	6,7415	0,1380
8	134	44,9268	6,2748	0,1605
9	124	50,6902	5,7635	0,1810
10	114	55,9790	5,2888	0,1999
11	105	60.8529	4.8738	0.2173
12	97	65.3592	4,5063	0.2334
13	90	69,5455	4.1863	0.2484
14	84	73,4592	3.9137	0.2624
15	77	77.0285	3,5693	0.2751
16	73	80.4446	3,4161	0.2873
17	68	83.6111	3,1665	0.2986
18	64	86 6000	2 9889	0 3093
10	60	89 3990	2 7990	0 3193
20	55	91 9485	2,5495	0 3284
20	52	94 3800	2,315	0 3371
21	19	96 6691	2,4313	0.3452
22	45	98 8158	2,2001	0,3432
23	40	100 7605	1 9446	0,3529
24	42	100,7005	1,9440	0,3579
25	42	102,7340	1,9930	0,3070
20	40	104,0282	1,0742	0,3737
27	27	100,5478	1,7195	0,3798
20	25	108,1040	1,7302	0,3801
29	33	109,7408	1,0308	0,3919
30	22	111,2827	1,5419	0,3974
31	21	112,8491	1,5004	0,4030
32	31	114,2961	1,4470	0,4082
33	29	115,6481	1,3521	0,4130
34	28	116,9649	1,3168	0,4177
35	27	118,2343	1,2693	0,4223
36	25	119,3964	1,1622	0,4264
37	24	120,5234	1,1269	0,4304
38	24	121,6626	1,1392	0,4345
39	22	122,6823	1,0198	0,4382
40	22	123,7266	1,0442	0,4419
41	21	124,7111	0,9845	0,4454
42	19	125,5885	0,8774	0,4485
43	19	126,4904	0,9018	0,4518
44	18	127,3325	0,8421	0,4548
45	17	128,1272	0,7947	0,4576
46	17	128,9341	0,8069	0,4605
47	17	129,7410	0,8069	0,4634
48	17	130.5479	0.8069	0.4662

Tablica 63. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C2,0ABK

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	194	11,5801	11,5801	0,0414
2	93	14,7596	3,1795	0,0527
3	84	18,6367	3,8771	0,0666
4	107	23,9967	5,3600	0,0857
5	129	30,3887	6,3920	0,1085
6	135	36,8699	6,4812	0,1317
7	126	42,7405	5,8706	0,1526
8	112	47,8854	5,1450	0,1710
9	99	52,4256	4,5401	0,1872
10	86	56,3487	3,9231	0,2012
11	77	59,8935	3,5448	0,2139
12	70	63,1305	3,2370	0,2255
13	63	66,0352	2,9047	0,2358
14	59	68,7868	2,7516	0,2457
15	55	71,3485	2,5617	0,2548
16	51	73,7203	2,3718	0,2633
17	47	75,9023	2,1820	0,2711
18	45	78,0138	2,1115	0,2786
19	41	79,9109	1,8972	0,2854
20	39	81,7376	1,8267	0,2919
21	37	83,4694	1,7318	0,2981
22	35	85,1063	1,6368	0,3040
23	33	86,6482	1,5419	0,3095
24	32	88,1548	1,5067	0,3148
25	30	89,5543	1,3995	0,3198
26	30	90,9783	1,4240	0,3249
27	28	92,2829	1,3046	0,3296
28	27	93,5522	1,2693	0,3341
29	27	94,8338	1,2816	0,3387
30	25	95,9960	1,1622	0,3428
31	23	97,0632	1,06/2	0,3467
32	23	98,1549	1,0917	0,3506
33	21	99,1273	0,9723	0,3540
34	19	100,0046	0,8774	0,3572
35	19	100,9065	0,9018	0,3604
36	19	101,8083	0,9018	0,3636
37	17	102,5908	0,7825	0,3664
38	17	103,3977	0,8069	0,3693
39	16	104,1449	0,7472	0,3719
40	16	104,9044	0,7595	0,3747
41	15	105,6041	0,6998	0,3772
42	15	106,3161	0,7120	0,3797
43	14	106,9684	0,6523	0,3820
44	14	107,6329	0,6645	0,3844
45	14	108,2974	0,6645	0,3868
46	13	108,9023	0,6048	0,3889
4/	13	109,5193	0,61/1	0,3911
48	12	110,0767	0.5574	0.3931

Tablica 64. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C3,0ABK
Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	234	13,9678	13,9678	0,0499
2	110	17,6730	3,7052	0,0631
3	98	22,1779	4,5049	0,0792
4	117	27,9636	5,7858	0,0999
5	128	34,1737	6,2101	0,1220
6	122	39,8911	5,7174	0,1425
7	108	44,8462	4,9551	0,1602
8	94	49,1368	4,2906	0,1755
9	78	52,6435	3,5067	0,1880
10	68	55,7489	3,1054	0,1991
11	61	58,5587	2,8098	0,2091
12	54	61,0362	2,4776	0,2180
13	50	63,3606	2,3244	0,2263
14	46	65,4951	2,1345	0,2339
15	42	67,4398	1,9446	0,2409
16	40	69,3139	1,8742	0,2475
17	38	71,0932	1,7792	0,2539
18	34	72,6581	1,5649	0,2595
19	33	74,2122	1,5541	0,2650
20	31	75,6592	1,4470	0,2702
21	30	77,0709	1,4117	0,2753
22	28	78,3755	1,3046	0,2799
23	26	79,5852	1,2096	0,2842
24	26	80,8193	1,2341	0,2886
25	24	81,9340	1,1147	0,2926
26	25	83,1328	1,1989	0,2969
27	25	84,3195	1,1866	0,3011
28	22	85,3270	1,0076	0,3047
29	23	86,4310	1,1039	0,3087
30	21	87,4033	0,9723	0,3122
31	32	89,0567	1,6534	0,3181
32	20	89,8593	0,8026	0,3209
33	18	90,6892	0,8299	0,3239
34	18	91,5436	0,8544	0,3269
35	18	92,3979	0,8544	0,3300
36	16	93,1329	0,7350	0,3326
37	16	93,8924	0,7595	0,3353
38	16	94,6518	0,7594	0,3380
39	14	95,2919	0,6401	0,3403
40	14	95,9564	0,6645	0,3427
41	14	96,6209	0,6645	0,3451
42	13	97,2258	0,6048	0,3472
43	13	97,8428	0,6171	0,3494
44	13	98,4599	0,6170	0,3516
45	13	99,0769	0,6171	0,3538
46	12	99,6343	0,5574	0,3558
47	11	100,1442	0,5099	0,3577
48	10	100,6066	0.4624	0.3593

Tablica 65. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C4,0ABK

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	<u>a</u>
0	0	0,0000	0,0000	0,0000
1	249	14,8632	14,8632	0,0531
2	111	18,4446	3,5815	0,0659
3	83	22,0419	3,5973	0,0787
4	90	26,3994	4,3575	0,0943
5	103	31,4473	5,0479	0,1123
6	107	36,5750	5,1277	0,1306
7	103	41,4150	4,8400	0,1479
8	95	45,8264	4,4114	0,1637
9	87	49,8581	4,0317	0,1781
10	79	53,5101	3,6520	0,1911
11	72	56,8420	3,3319	0,2030
12	67	59,9611	3,1191	0,2141
13	63	62,9025	2,9414	0,2247
14	59	65,6541	2,7516	0,2345
15	55	68,2157	2,5617	0,2436
16	53	70,7070	2,4912	0,2525
17	51	73,1032	2,3963	0,2611
18	48	75,3449	2,2417	0,2691
19	46	77,5039	2,1590	0,2768
20	44	79,5679	2,0640	0,2842
21	43	81,5967	2,0288	0,2914
22	39	83,3989	1,8022	0,2979
23	39	85,2501	1,8512	0,3045
24	39	87,1012	1,8512	0,3111
25	36	88,7733	1,6721	0,3170
26	35	90,4224	1,6491	0,3229
27	34	92,0240	1,6016	0,3287
28	31	93,4587	1,4347	0,3338
29	31	94,9302	1,4714	0,3390
30	31	96,4016	1,4714	0,3443
31	29	97,7536	1,3520	0,3491
32	28	99,0704	1,3168	0,3538
33	27	100,3398	1,2693	0,3584
34	26	101,5617	1,2219	0,3627
35	25	102,7361	1,1744	0,3669
36	25	103,9227	1,1866	0,3712
37	25	105,1093	1,1866	0,3754
38	23	106,1766	1,0673	0,3792
39	23	107,2683	1,0917	0,3831
40	23	108,3600	1,0917	0,3870
41	21	109,3323	0,9723	0,3905
42	22	110,3888	1,0565	0,3942
43	21	111,3733	0,9845	0,3978
44	19	112,2507	0,8774	0,4009
45	20	113,2123	0,9615	0,4043
46	19	114,1019	0,8896	0,4075
47	19	115,0037	0,9018	0,4107
48	19	115,9056	0,9018	0.4139

Tablica 66. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C5,0ABK

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	α
0	0	0,0000	0,0000	0,0000
1	104	6,2079	6,2079	0,0222
2	62	8,6373	2,4294	0,0308
3	62	11,5801	2,9429	0,0414
4	81	15,6571	4,0770	0,0559
5	104	20,8747	5,2176	0,0746
6	121	26,8259	5,9512	0,0958
7	131	33,1661	6,3402	0,1185
8	133	39,5035	6,3374	0,1411
9	131	45,6970	6,1935	0,1632
10	125	51,5568	5,8598	0,1841
11	120	57,1915	5,6347	0,2043
12	114	62,5292	5,3377	0,2233
13	108	67,5822	5,0529	0,2414
14	103	72,4100	4,8278	0,2586
15	96	76,8811	4,4711	0,2746
16	91	81,1393	4,2582	0,2898
17	85	85,1005	3,9612	0,3039
18	80	88,8366	3,7361	0,3173
19	76	92,3951	3,5585	0,3300
20	71	95,7040	3,3089	0,3418
21	66	98,7756	3,0716	0,3528
22	62	101,6695	2,8940	0,3631
23	59	104,4333	2,7638	0,3730
24	56	107,0547	2,6214	0,3823
25	53	109,5337	2,4790	0,3912
26	50	111,8703	2,3366	0,3995
27	48	114,1242	2,2539	0,4076
28	46	116,2831	2,1590	0,4153
29	43	118,2875	2,0043	0,4225
30	41	120,2091	1,9216	0,4293
31	40	122,0955	1,8864	0,4361
32	38	123,8747	1,7792	0,4424
33	36	125,5590	1,6843	0,4484
34	35	127,2081	1,6491	0,4543
35	33	128,7500	1,5419	0,4598
36	32	130,2567	1,5067	0,4652
37	30	131,6562	1,3995	0,4702
38	29	133,0205	1,3643	0,4751
39	28	134,3373	1,3168	0,4798
40	27	135,6066	1,2693	0,4843
41	26	136,8285	1,2219	0,4887
42	26	138,0626	1,2341	0,4931
43	24	139,1773	1,1147	0,4971
44	24	140,3165	1,1392	0,5011
45	23	141,3959	1,0795	0,5050
46	23	142,4876	1,0917	0,5089
47	22	143,5197	1,0320	0,5126
48	21	144.5042	0.9846	0.5161

Tablica 67. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C1,0ABK20Z

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	α
0	0	0,0000	0,0000	0,0000
1	160	9,5506	9,5506	0,0341
2	91	13,0264	3,4758	0,0465
3	92	17,4054	4,3790	0,0622
4	117	23,2645	5,8591	0,0831
5	133	29,7731	6,5085	0,1063
6	133	36,0860	6,3129	0,1289
7	124	41,8616	5,7757	0,1495
8	112	47,0311	5,1694	0,1680
9	98	51,5115	4,4804	0,1840
10	88	55,5662	4,0547	0,1985
11	79	59,2059	3,6397	0,2114
12	72	62,5379	3,3319	0,2233
13	66	65,5972	3,0594	0,2343
14	61	68,4315	2,8343	0,2444
15	56	71,0284	2,5969	0,2537
16	52	73,4477	2,4193	0,2623
17	49	75,7369	2,2891	0,2705
18	46	77,8836	2,1467	0,2782
19	42	79,8282	1,9446	0,2851
20	41	81,7621	1,9338	0,2920
21	37	83,4694	1,7073	0,2981
22	36	85,1659	1,6965	0,3042
23	34	86,7553	1,5894	0,3098
24	31	88,1901	1,4348	0,3150
25	30	89,6018	1,4117	0,3200
26	29	90,9661	1,3643	0,3249
27	28	92,2829	1,3168	0,3296
28	25	93,4328	1,1500	0,3337
29	24	94,5598	1,1270	0,3377
30	23	95,6393	1,0795	0,3416
31	22	96,6713	1,0320	0,3453
32	22	97,7155	1,0442	0,3490
33	21	98,7001	0,9845	0,3525
34	20	99,6371	0,9371	0,3558
35	18	100,4671	0,8299	0,3588
36	20	101,4408	0,9738	0,3623
37	17	102,2111	0,7702	0,3650
38	17	103,0180	0,8069	0,3679
39	17	103,8249	0,8069	0,3708
40	16	104,5721	0,7472	0,3735
41	16	105,3316	0,7594	0,3762
42	16	106,0910	0,7594	0,3789
43	15	106,7908	0,6998	0,3814
44	14	107,4431	0,6523	0,3837
45	16	108,2270	0,7839	0,3865
46	14	108,8670	0,6401	0,3888
47	14	109,5315	0,6645	0,3912
48	14	110.1961	0.6645	0.3936

Tablica 68. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C2,0ABK20Z

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
ĥ	μV	J/g	J/gh	a
0	0	0,0000	0,0000	0,0000
1	168	10,0282	10,0282	0,0358
2	86	13,1077	3,0795	0,0468
3	84	17,0703	3,9626	0,0610
4	107	22,4303	5,3600	0,0801
5	122	28,4045	5,9742	0,1014
6	120	34,0759	5,6714	0,1217
7	111	39,2345	5,1586	0,1401
8	96	43,6078	4,3733	0,1557
9	83	47,3885	3,7807	0,1692
10	73	50,7312	3,3427	0,1812
11	64	53,6590	2,9277	0,1916
12	58	56,3386	2,6796	0,2012
13	54	58,8528	2,5142	0,2102
14	49	61,1175	2,2647	0,2183
15	46	63,2642	2,1467	0,2259
16	44	65,3283	2,0640	0,2333
17	40	67,1780	1,8497	0,2399
18	37	68,8975	1,7195	0,2461
19	36	70,5941	1,6965	0,2521
20	33	72,1237	1,5297	0,2576
21	32	73,6304	1,5067	0,2630
22	30	75,0299	1,3995	0,2680
23	28	76,3345	1,3046	0,2726
24	28	77,6635	1,3290	0,2774
25	25	78,8135	1,1500	0,2815
26	25	80,0001	1,1866	0,2857
27	24	81,1271	1,1269	0,2897
28	23	82,2065	1,0795	0,2936
29	22	83,2386	1,0320	0,2973
30	20	84,1634	0,9249	0,3006
31	20	85,1127	0,9493	0,3040
32	18	85,9426	0,8299	0,3069
33	17	86,7373	0,7947	0,3098
34	17	87,5442	0,8069	0,3127
35	16	88,2915	0,7472	0,3153
36	15	88,9912	0,6998	0,3178
37	16	89,7629	0,7717	0,3206
38	14	90,4030	0,6401	0,3229
39	13	91,0078	0,6048	0,3250
40	14	91,6845	0,6767	0,3274
41	12	92,2297	0,5451	0,3294
42	12	92,7992	0,5696	0,3314
43	12	93,3688	0,5696	0,3335
44	11	93,8787	0,5099	0,3353
45	11	94,4008	0,5221	0,3371
46	11	94,9230	0,5221	0,3390
47	10	95,3854	0,4624	0,3407
48	10	95,8600	0,4747	0,3424

Tablica 69. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C3,0ABK20Z

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	α
0	0	0,0000	0,0000	0,0000
1	222	13,2515	13,2515	0,0473
2	103	16,6855	3,4341	0,0596
3	79	20,1419	3,4563	0,0719
4	88	24,4289	4,2870	0,0872
5	99	29,2624	4,8336	0,1045
6	105	34,3197	5,0572	0,1226
7	101	39,0648	4,7451	0,1395
8	91	43,2619	4,1971	0,1545
9	83	47,1037	3,8418	0,1682
10	72	50,3867	3,2830	0,1800
11	64	53,3267	2,9400	0,1905
12	59	56,0660	2,7393	0,2002
13	53	58,5083	2,4423	0,2090
14	49	60,7853	2,2769	0,2171
15	47	62,9917	2,2064	0,2250
16	45	65,1032	2,1115	0,2325
17	41	67,0003	1,8972	0,2393
18	39	68,8270	1,8267	0,2458
19	37	70,5588	1,7318	0,2520
20	35	72,1957	1,6368	0,2578
21	35	73,8569	1,6613	0,2638
22	32	75,3392	1,4822	0,2691
23	30	76,7387	1,3995	0,2741
24	28	78,0432	1,3046	0,2787
25	28	79,3723	1,3290	0,2835
26	26	80,5819	1,2097	0,2878
27	25	81,7563	1,1744	0,2920
28	24	82,8833	1,1269	0,2960
29	23	83,9628	1,0795	0,2999
30	22	84,9948	1,0320	0,3036
31	22	86,0390	1,0442	0,3073
32	20	86,9639	0,9249	0,3106
33	20	87,9132	0,9493	0,3140
34	19	88,8028	0,8896	0,3172
35	19	89,7046	0,9018	0,3204
36	17	90,4871	0,7825	0,3232
37	17	91,2940	0,8069	0,3261
38	16	92,0412	0,7472	0,3287
39	15	92,7410	0,6998	0,3312
40	16	93,5127	0,7717	0,3340
41	15	94,2124	0,6998	0,3365
42	15	94,9244	0,7120	0,3390
43	14	95,5767	0,6523	0,3413
44	14	96,2412	0,6645	0,3437
45	12	96,7863	0,5451	0,3457
46	12	97,3559	0,5696	0,3477
47	13	97,9852	0,6293	0,3499
48	12	98.5426	0.5574	0 3519

Tablica 70. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C4,0ABK20Z

Vrijeme	Termonapon	Toplina hidr.	Brzina hidr.	Stupanj hidr.
h	μV	J/g	J/gh	α
0	0	0,0000	0,0000	0,0000
1	209	12,4755	12,4755	0,0446
2	90	15,2925	2,8170	0,0546
3	64	18,0124	2,7199	0,0643
4	70	21,4084	3,3959	0,0765
5	81	25,3875	3,9792	0,0907
6	88	29,6501	4,2625	0,1059
7	87	33,7673	4,1173	0,1206
8	81	37,5387	3,7713	0,1341
9	75	41,0252	3,4865	0,1465
10	68	44,1673	3,1421	0,1577
11	62	47,0368	2,8695	0,1680
12	57	49,6812	2,6444	0,1774
13	53	52,1480	2,4668	0,1862
14	49	54,4249	2,2769	0,1944
15	46	56,5716	2,1467	0,2020
16	42	58,5163	1,9446	0,2090
17	40	60,3904	1,8742	0,2157
18	38	62,1697	1.7792	0.2220
19	35	63,7943	1,6246	0,2278
20	33	65,3362	1,5419	0,2333
21	32	66.8428	1.5067	0.2387
22	30	68,2424	1.3995	0.2437
23	29	69.6066	1.3643	0.2486
24	27	70.8637	1.2571	0.2531
25	26	72.0856	1.2219	0.2574
26	26	73,3197	1.2341	0.2619
27	25	74,4941	1,1744	0.2661
28	24	75.6211	1.1270	0.2701
29	23	76,7005	1.0795	0.2739
30	22	77.7326	1.0320	0.2776
31	21	78.7171	0.9845	0.2811
32	20	79.6542	0.9371	0.2845
33	19	80,5438	0.8896	0.2877
34	18	81.3860	0.8421	0.2907
35	17	82,1807	0.7947	0.2935
36	17	82.9876	0.8069	0.2964
37	16	83,7348	0,7472	0,2991
38	16	84.4942	0.7594	0.3018
39	15	85,1940	0.6998	0.3043
40	14	85,8463	0.6523	0,3066
41	13	86.4511	0.6048	0.3088
42	13	87,0682	0.6171	0.3110
43	12	87.6255	0.5574	0.3129
44	12	88,1951	0.5696	0.3150
45	12	88.7647	0.5696	0.3170
46	11	89.2746	0.5099	0.3188
47	11	89,7967	0.5221	0.3207
48	10	90 2591	0.4624	0.3224

Tablica 71. Vrijednosti topline, brzine oslobađanja topline i relativnog stupnjahidratacije u funkciji vremena hidratacije za uzorak C5,0ABK20Z

4.4. Rezultati određivanja specifične provodnosti

Izmjerene vrijednosti specifične provodnosti uzoraka portland cementa uz različite dodatke mulja, zasićenog i prirodnog zeolita, PbO, PbCrO₄ i $(NH_4)_2Cr_2O_7$ prikazane su grafički na slikama **68** – **75**.

Slika 68. Ovisnost spec. provodnosti o vremenu hidratacije uzoraka cementa uz dodatak 0,0 - 7,0 mas. % mulja

Slika 69. Ovisnost spec. provodnosti o vremenu hidratacije uzoraka cementa uz dodatak 0 – 35 mas. % zeolita (uz 3 mas. % mulja u uzorku)

Slika 70. Ovisnost spec. provodnosti o vremenu hidratacije uzoraka cementa uz dodatak 0,0 - 0,30 mas. % PbO

Slika 71. Ovisnost spec. provodnosti o vremenu hidratacije uzoraka cementa uz dodatak 0 – 30 mas. % zeolita (uz 0,3 mas. % PbO u uzorku)

Slika 72. Ovisnost spec. provodnosti o vremenu hidratacije uzoraka cementa uz dodatak 0,00 – 3,00 mas. % olovo(II) kromata

Slika 73. Ovisnost spec. provodnosti o vremenu hidratacije uzoraka cementa uz dodatak 0,00 – 3,00 mas. % olovo(II) kromata (uz 20 mas. % zeolita u uzorku)

Slika 74. Ovisnost spec. provodnosti o vremenu hidratacije uzoraka cementa uz dodatak 0,0 – 5,0 mas. % amonijeva bikromata

Slika 75. *Ovisnost spec. provodnosti o vremenu hidratacije uzoraka cementa uz dodatak* 0,0 - 5,0 mas. % amonijeva bikromata (uz 20 mas. % zeolita u uzorku)

4.5. Rezultati određivanja koncentracije iona cinka, olova i kroma u otopinama nakon izluživanja

Kumulativni udjeli izluženih iona cinka, olova i kroma u otopinama nakon izluživanja uzoraka cementa uz različite dodatke mulja, zasićenog i prirodnog zeolita, PbO, PbCrO₄ i (NH₄)₂Cr₂O₇ prikazani su grafički na slikama **76 - 86**.

Slika 76. Ovisnost kumulativnog udjela izluženih iona cinka o vremenu izluživanja uzoraka cementa uz 2 – 20 mas. % mulja

Slika 77. Ovisnost kumulativnog udjela izluženih iona cinka o vremenu izluživanja uzoraka cementa uz 5 – 30 mas. % zas. zeolita (uz 20 mas. % mulja u smjesi)

Slika 78. Ovisnost kumulativnog udjela izluženih iona cinka o vremenu izluživanja uzoraka cementa uz 5 – 30 mas. % zas. zeolita (uz 30 mas. % mulja u smjesi)

Slika 79. Ovisnost kumulativnog udjela izluženih iona cinka o vremenu izluživanja uzoraka cementa uz 5 – 30 mas. % zas. zeolita (uz 40 mas. % mulja u smjesi)

Slika 80. Ovisnost kumulativnog udjela izluženih iona cinka o vremenu izluživanja uzoraka cementa uz 5 – 30 mas. % zas. zeolita (uz 50 mas. % mulja u smjesi)

Slika 81. Ovisnost kumulativnog udjela izluženih iona olova o vremenu izluživanja uzoraka cementa uz 0,2 – 0,7 mas. % PbO

Slika 82. Ovisnost kumulativnog udjela izluženih iona olova o vremenu izluživanja uzoraka cementa uz 0,2 – 0,7 mas. % PbO (uz 20 mas. % zeolita u uzorku)

Slika 83. Ovisnost kumulativnog udjela izluženih iona olova (a))i kroma (b)) o vremenu izluživanja uzoraka cementa uz dodatak 0,5 – 3,0 mas. % PbCrO₄

Slika 84. Ovisnost kumulativnog udjela izluženih iona olova (a))i kroma (b)) o vremenu izluživanja uzoraka cementa uz dodatak 0,5 – 3,0 mas. % PbCrO₄ (uz 20 mas. % zeolita u uzorku)

Slika 85. Ovisnost kumulativnog udjela izluženih iona kroma o vremenu izluživanja uzoraka cementa uz dodatak 0,5 – 5,0 mas. % amonijeva bikromata

Slika 86. Ovisnost kumulativnog udjela izluženih iona kroma o vremenu izluživanja uzoraka cementa uz dodatak 0,5 – 5,0 mas. % amonijeva bikromata (uz 20 mas. % zeolita u uzorku)

4.6. Rezultati određivanja pH vrijednosti i specifične provodnosti u otopinama nakon izluživanja

Rezultati određivanja pH vrijednosti i specifične provodnosti u otopinama nakon izluživanja uzoraka cementa uz različite dodatke mulja, zasićenog i prirodnog zeolita, PbO, PbCrO₄ i (NH₄)₂Cr₂O₇ prikazani su na slikama **87 - 108**.

Slika 87. Ovisnost pH vrijednosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz dodatak 2 – 20 mas. % mulja

Slika 88. Ovisnost spec. provodnosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz dodatak 2 – 20 mas. % mulja

Slika 89. Ovisnost pH vrijednosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz 5 – 30 mas. % zas. zeolita (uz 20 mas. % mulja u smjesi)

Slika 90. Ovisnost spec. provodnosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz 5 – 30 mas. % zas. zeolita (uz 20 mas. % mulja u smjesi)

Slika 91. Ovisnost pH vrijednosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz 5 – 30 mas. % zas. zeolita (uz 30 mas. % mulja u smjesi)

Slika 92. Ovisnost spec. provodnosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz 5 – 30 mas. % zas. zeolita (uz 30 mas. % mulja u smjesi)

Slika 93. Ovisnost pH vrijednosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz 5 – 30 mas. % zas. zeolita (uz 40 mas. % mulja u smjesi)

Slika 94. Ovisnost spec. provodnosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz 5 - 30 mas. % zas. zeolita (uz 40 mas. % mulja u

smjesi)

Slika 95. Ovisnost pH vrijednosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz 5 – 30 mas. % zas. zeolita (uz 50 mas. % mulja u smjesi)

Slika 96. Ovisnost spec. provodnosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz 5 – 30 mas. % zas. zeolita (uz 50 mas. % mulja u smjesi)

Slika 97. Ovisnost pH vrijednosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz dodatak 0,2 – 0,7 mas. % PbO

Slika 98. Ovisnost spec. provodnosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz dodatak 0,2 – 0,7 mas. % PbO

Slika 99. Ovisnost pH vrijednosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz dodatak 0,2 – 0,7 mas. % PbO (uz 20 mas. % zeolita u uzorku)

Slika 100. Ovisnost spec. provodnosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz dodatak 0,2 – 0,7 mas. % PbO (uz 20 mas. % zeolita u uzorku)

Slika 101. Ovisnost pH vrijednosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz dodatak 0,5 – 3,0 mas. % PbCrO₄

Slika 102. Ovisnost spec. provodnosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz dodatak 0,5 – 3,0 mas. % PbCrO₄

Slika 103. Ovisnost pH vrijednosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz dodatak 0,5 – 3,0 mas. % PbCrO₄ (uz 20 mas. % zeolita u uzorku)

Slika 104. Ovisnost spec. provodnosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz dodatak 0,5 - 3,0 mas. % PbCrO₄ (uz 20 mas. % zeolita

u uzorku)

Slika 105. Ovisnost pH vrijednosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz dodatak 0,5 – 5,0 mas. % amonijeva bikromata

Slika 106. Ovisnost spec. provodnosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz dodatak 0,5 – 5,0 mas. % amonijeva bikromata

Slika 107. Ovisnost pH vrijednosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz dodatak 0,5 – 5,0 mas. % amonijeva bikromata (uz 20 mas. % zeolita u uzorku)

Slika 108. Ovisnost spec. provodnosti o vremenu izluživanja u otopinama nakon izluživanja uzoraka cementa uz dodatak 0,5 – 5,0 mas. % amonijeva bikromata (uz 20 mas. % zeolita u uzorku)

4.7. Rezultati određivanja mehanizama izluživanja primjenom difuzijskog modela

Na osnovi difuzijskog modela i vrijednosti izluženog metala u otopinama nakon izluživanja određeni su koeficijenti difuzije, udjeli izluženih iona metala, srednje vrijednosti indeksa izluživanja i nagibi pravaca za ione cinka, olova, kroma i smjesu olova i kroma. Nagibi pravca su poslužili pri određivanju mehanizama izluživanja. Rezultati su prikazani u tablicama 72 - 76 te na slikama 109 - 127.

4.7.1. Rezultati određivanja mehanizama izluživanja iona cinka primjenom difuzijskog modela

Koeficijenti difuzije,	Vrijeme izluživanja, sati				
cm ² /s Uzorak	18 h	72 h	168 h		
CEM I + 2M	$5,00 \cdot 10^{-9}$	$8,34 \cdot 10^{-10}$	$1,00 \cdot 10^{-9}$		
CEM I + 5M	$4,01 \cdot 10^{-10}$	$2,00 \cdot 10^{-9}$	$1,00 \cdot 10^{-9}$		
CEM I + 10M	$2,00 \cdot 10^{-9}$	$4,76 \cdot 10^{-10}$	$7,82 \cdot 10^{-10}$		
CEM I + 20M	9,00 · 10 ⁻⁹	$1,00 \cdot 10^{-9}$	$4,27 \cdot 10^{-10}$		
CEM I + 5ZZ20M	$4,38 \cdot 10^{-12}$	$2,58 \cdot 10^{-11}$	$4,23 \cdot 10^{-11}$		
CEM I + 10ZZ20M	$9,92 \cdot 10^{-10}$	$1,01 \cdot 10^{-11}$	$2,00 \cdot 10^{-9}$		
CEM I + 20ZZ20M	$2,00 \cdot 10^{-9}$	$1,09 \cdot 10^{-11}$	$5,37 \cdot 10^{-10}$		
CEM I + 30ZZ20M	$1,00 \cdot 10^{-9}$	$2,17 \cdot 10^{-11}$	$2,65 \cdot 10^{-10}$		
CEM I + 5ZZ30M	$5,00 \cdot 10^{-9}$	$1,29 \cdot 10^{-10}$	$3,00 \cdot 10^{-9}$		
CEM I + 10ZZ30M	$1,00 \cdot 10^{-9}$	$1,00 \cdot 10^{-9}$	$2,00 \cdot 10^{-9}$		
CEM I + 20ZZ30M	$5,00 \cdot 10^{-9}$	$5,31 \cdot 10^{-10}$	$1,00 \cdot 10^{-9}$		
CEM I + 30ZZ30M	$5,98 \cdot 10^{-11}$	$1,24 \cdot 10^{-10}$	$4,51 \cdot 10^{-10}$		
CEM I + 5ZZ40M	$1,00 \cdot 10^{-9}$	$1,04 \cdot 10^{-10}$	$7,04 \cdot 10^{-11}$		
CEM I + 10ZZ40M	$1,10 \cdot 10^{-8}$	$4,20 \cdot 10^{-8}$	$2,00 \cdot 10^{-9}$		
CEM I + 20ZZ40M	$1,35 \cdot 10^{-11}$	$3,85 \cdot 10^{-10}$	$1,09 \cdot 10^{-11}$		
CEM I + 30ZZ40M	$4,48 \cdot 10^{-10}$	$1,00 \cdot 10^{-8}$	8,91 · 10 ⁻¹¹		
CEM I + 5ZZ50M	$2,20 \cdot 10^{-8}$	$5,00 \cdot 10^{-9}$	$1,60 \cdot 10^{-8}$		
CEM I + 10ZZ50M	$2,80 \cdot 10^{-8}$	$1,90 \cdot 10^{-8}$	$1,08 \cdot 10^{-10}$		
CEM I + 20ZZ50M	$8,72 \cdot 10^{-10}$	$7,00 \cdot 10^{-9}$	6,00 · 10 ⁻⁹		
CEM I + 30ZZ50M	$4,40 \cdot 10^{-8}$	2,89 · 10 -11	$2,38 \cdot 10^{-10}$		

Tablica 72. Koeficijenti difuzije iona cinka za uzorke cementa uz dodatak zasićenogzeolita i mulja

Slika 109. Srednje vrijednosti indeksa izluživanja cinka (LI_{sr}) u uzorcima cementa uz

dodatak mulja (- kriterij za ocijenu uspješnosti postupka)

Slika 110. Srednje vrijednosti indeksa izluživanja cinka (LI_{sr}) u uzorcima cementa uz dodatak zas. zeolita i 20 mas. % mulja u smjesi

Slika 111. Srednje vrijednosti indeksa izluživanja cinka (LI_{sr}) u uzorcima cementa uz dodatak zas. zeolita i 30 mas. % mulja u smjesi

Slika 112. Srednje vrijednosti indeksa izluživanja cinka (LI_{sr}) u uzorcima cementa uz dodatak zas. zeolita i 40 mas. % mulja u smjesi

Slika 113. Srednje vrijednosti indeksa izluživanja cinka (LI_{sr}) u uzorcima cementa uz dodatak zas. zeolita i 50 mas. % mulja u smjesi

Slika114. *Mehanizam izluživanja iona cinka određen preko nagiba pravca iz ovisnosti kumulativnog otpuštanja cinka o vremenu izluživanja za uzorke cementa uz dodatak*

mulja

c)

Slika115. Mehanizam izluživanja cinka određen preko nagiba pravca iz ovisnosti kumulativnog otpuštanja cinka o vremenu izluživanja za uzorke cementa uz dodatak zas. zeolita i 20 (a)), 30 (b)), 40 (c)) i 50 (d)) mas. % mulja u smjesi

4.7.2. Rezultati određivanja mehanizama izluživanja iona olova preko difuzijskog modela

Koeficijenti difuzije,	Vrijeme izluživanja, sati				
cm ² /s Uzorak	18 h	72 h	168 h		
CEM I + 0,2PbO	$7,58 \cdot 10^{-13}$	$9,37 \cdot 10^{-13}$	$6,91 \cdot 10^{-13}$		
CEM I + 0,3PbO	$1,35 \cdot 10^{-12}$	$6,00 \cdot 10^{-13}$	$1,11 \cdot 10^{-13}$		
CEM I + 0,4PbO	$8,42 \cdot 10^{-14}$	$1,15 \cdot 10^{-11}$	$1,77 \cdot 10^{-12}$		
CEM I + 0,5PbO	$7,74 \cdot 10^{-14}$	9,60 · 10 ⁻¹⁴	$1,77 \cdot 10^{-14}$		
CEM I + 0,6PbO	$2,39 \cdot 10^{-12}$	$2,67 \cdot 10^{-13}$	$1,23 \cdot 10^{-12}$		
CEM I + 0,7PbO	$2,48 \cdot 10^{-12}$	$4,41 \cdot 10^{-13}$	$8,14 \cdot 10^{-13}$		
CEM I + 0,2PbO(20Z)	$3,04 \cdot 10^{-11}$	$7,35 \cdot 10^{-12}$	$7,07 \cdot 10^{-12}$		
CEM I + 0,3PbO(20Z)	$1,08 \cdot 10^{-11}$	$4,82 \cdot 10^{-12}$	$2,41 \cdot 10^{-12}$		
CEM I + 0,4PbO(20Z)	$3,03 \cdot 10^{-12}$	$1,35 \cdot 10^{-12}$	$7,99 \cdot 10^{-12}$		
CEM I + 0,5PbO(20Z)	$7,76 \cdot 10^{-12}$	$3,46 \cdot 10^{-12}$	$8,18 \cdot 10^{-12}$		
CEM I + 0,6PbO(20Z)	$2,39 \cdot 10^{-12}$	$2,40 \cdot 10^{-12}$	$7,86 \cdot 10^{-13}$		
CEM I + 0,7PbO(20Z)	$1,99 \cdot 10^{-12}$	$3,70 \cdot 10^{-13}$	$7,31 \cdot 10^{-13}$		

Tablica 73. Koeficijenti difuzije iona olova za uzorke cementa uz različite dodatke PbOi PbO uz 20 mas. % zeolita

Slika 116. Srednje vrijednosti indeksa izluživanja olova (LI_{sr}) u uzorcima cementa uz različite dodatke PbO (- kriterij za ocijenu uspješnosti postupka)

Slika 117. Srednje vrijednosti indeksa izluživanja olova (LI_{sr}) u uzorcima cementa uz različite dodatke PbO (uz 20 mas. % zeolita u uzorku)

Slika118. Mehanizam izluživanja olova određen preko nagiba pravca iz ovisnosti kumulativnog otpuštanja iona olova o vremenu izluživanja za uzorke cementa uz različite dodatke PbO (a)) i PbO uz 20 mas. % zeolita (b))

Tablica 74.	. Koeficijenti difuzije iona kroma za uzorke cementa uz dodatak amonijevo
	bikromata i amonijeva bikromata uz 20 mas. % zeolita

Koeficijenti difuzije,	Vrijeme izluživanja, sati				
cm ² /s Uzorak	18 h	72 h	168 h		
CEM I + 0,5ABK	$6,00 \cdot 10^{-9}$	$2,15 \cdot 10^{-10}$	$1,00 \cdot 10^{-9}$		
CEM I + 1,0ABK	$5,00 \cdot 10^{-9}$	$1,00 \cdot 10^{-9}$	$1,10 \cdot 10^{-10}$		
CEM I + 1,5ABK	$2,85 \cdot 10^{-10}$	$8,87 \cdot 10^{-10}$	$5,64 \cdot 10^{-10}$		
CEM I + 2,0ABK	5,60 · 10 ⁻⁸	$1,70 \cdot 10^{-8}$	$1,50 \cdot 10^{-8}$		
CEM I + 2,5ABK	$2,55 \cdot 10^{-10}$	$1,71 \cdot 10^{-10}$	6,60 · 10 ⁻¹¹		
CEM I + 3,0ABK	$1,73 \cdot 10^{-10}$	$3,25 \cdot 10^{-11}$	$4,45 \cdot 10^{-11}$		
CEM I + 4,0ABK	$8,87 \cdot 10^{-10}$	$1,00 \cdot 10^{-9}$	$1,00 \cdot 10^{-9}$		
CEM I + 5,0ABK	$4,00 \cdot 10^{-9}$	$1,00 \cdot 10^{-9}$	$1,00 \cdot 10^{-9}$		
CEM I + 0,5ABK(20Z)	$2,00 \cdot 10^{-9}$	$2,86 \cdot 10^{-10}$	$1,13 \cdot 10^{-10}$		
CEM I + 1,0ABK(20Z)	$3,83 \cdot 10^{-11}$	$1,71 \cdot 10^{-11}$	9,99 · 10 ⁻¹¹		
CEM I + 1,5ABK(20Z)	$5,15 \cdot 10^{-10}$	$5,65 \cdot 10^{-10}$	9,64 · 10 ⁻¹⁰		
CEM I + 2,0ABK(20Z)	$1,42 \cdot 10^{-11}$	$4,71 \cdot 10^{-11}$	$2,42 \cdot 10^{-11}$		
CEM I + 2,5ABK(20Z)	$1,37 \cdot 10^{-10}$	$1,63 \cdot 10^{-10}$	$1,12 \cdot 10^{-10}$		
CEM I + 3,0ABK(20Z)	$2,37 \cdot 10^{-10}$	$1,88 \cdot 10^{-10}$	$1,34 \cdot 10^{-10}$		
CEM I + 4,0ABK(20Z)	$1,94 \cdot 10^{-10}$	$2,00 \cdot 10^{-9}$	$7,07 \cdot 10^{-10}$		
CEM I + 5,0ABK(20Z)	$2,78 \cdot 10^{-10}$	$6,14 \cdot 10^{-10}$	$7,21 \cdot 10^{-10}$		

Slika 119. Srednje vrijednosti indeksa izluživanja kroma (LI_{sr}) u uzorcima cementa uz različite dodatke amonijeva bikromata (- kriterij za ocijenu uspješnosti postupka)

Slika 120. Srednje vrijednosti indeksa izluživanja kroma (LI_{sr}) u uzorcima cementa uz različite dodatke amonijeva bikromata (uz 20 mas. % zeolita u uzorku)

Slika121. Mehanizam izluživanja kroma određen preko nagiba pravca iz ovisnosti kumulativnog otpuštanja iona kroma o vremenu izluživanja za uzorke cementa uz različite dodatke amonijeva bikromata (a)) i amonijeva bikromata uz 20 mas. % zeolita

4.7.4. Rezultati određivanja mehanizama izluživanja smjese olova i kroma preko difuzijskog modela

Tablica 75. Koeficijenti difuzije iona olova za uzorke cementa uz dodatak $PbCrO_4$ i $PbCrO_4$ uz 20 mas. % zeolita

Koeficijenti difuzije,	Vrijeme izluživanja, sati			
cm ² /s Uzorak	18 h	72 h	168 h	
CEM I + 0,5PbCrO ₄	$1,18 \cdot 10^{-12}$	$4,21 \cdot 10^{-12}$	$1,72 \cdot 10^{-13}$	
CEM I + 1,0PbCrO ₄	$7,87 \cdot 10^{-12}$	$3,51 \cdot 10^{-12}$	$3,25 \cdot 10^{-13}$	
CEM I + 1,5PbCrO ₄	$3,64 \cdot 10^{-13}$	$5,85 \cdot 10^{-13}$	$4,30 \cdot 10^{-14}$	
CEM I + 2,0PbCrO ₄	$4,33 \cdot 10^{-12}$	$2,34 \cdot 10^{-13}$	$6,05 \cdot 10^{-15}$	
CEM I + 2,5PbCrO ₄	$1,34 \cdot 10^{-12}$	$1,69 \cdot 10^{-13}$	$4,30 \cdot 10^{-14}$	
CEM I + 3,0PbCrO ₄	$3,28 \cdot 10^{-14}$	$9,12 \cdot 10^{-14}$	$4,30 \cdot 10^{-14}$	
CEM I + 0,5PbCrO ₄ (20Z)	$4,72 \cdot 10^{-12}$	$2,86 \cdot 10^{-12}$	$8,71 \cdot 10^{-13}$	
CEM I + 1,0PbCrO ₄ (20Z)	$1,18 \cdot 10^{-12}$	$7,15 \cdot 10^{-13}$	$6,05 \cdot 10^{-13}$	
CEM I + 1,5PbCrO ₄ (20Z)	$6,15 \cdot 10^{-13}$	$5,25 \cdot 10^{-13}$	$5,79 \cdot 10^{-13}$	
CEM I + 2,0PbCrO ₄ (20Z)	$7,37 \cdot 10^{-14}$	$4,47 \cdot 10^{-14}$	$1,94 \cdot 10^{-13}$	
CEM I + 2,5PbCrO ₄ (20Z)	$3,79 \cdot 10^{-13}$	$1,69 \cdot 10^{-13}$	$1,24 \cdot 10^{-13}$	
CEM I + 3,0PbCrO ₄ (20Z)	$7,37 \cdot 10^{-14}$	$7,95 \cdot 10^{-14}$	$1,08 \cdot 10^{-14}$	

Slika 122. Srednje vrijednosti indeksa izluživanja olova (LI_{sr}) u uzorcima cementa uz različite dodatke PbCrO₄ (- kriterij za ocijenu uspješnosti postupka)

Slika 123. Srednje vrijednosti indeksa izluživanja olova (LI_{sr}) u uzorcima cementa uz različite dodatke i $PbCrO_4$ uz 20 mas. % zeolita

Slika124. *Mehanizam izluživanja olova određen preko nagiba pravca iz ovisnosti kumulativnog otpuštanja iona olova o vremenu izluživanja za uzorke cementa uz različite dodatke PbCrO₄ (a) i PbCrO₄ uz 20 mas. % zeolita (b))*

Koeficijenti difuzije,	Vrijeme izluživanja, sati		
cm ² /s Uzorak	18 h	72 h	168 h
CEM I + 0,5PbCrO ₄	$2,03 \cdot 10^{-7}$	$2,20 \cdot 10^{-8}$	$1,50 \cdot 10^{-8}$
CEM I + 1,0PbCrO ₄	$1,34 \cdot 10^{-7}$	$7,14 \cdot 10^{-10}$	$3,10 \cdot 10^{-9}$
CEM I + 1,5PbCrO ₄	6,20 · 10 ⁻⁸	$1,00 \cdot 10^{-8}$	9,00 · 10 ⁻⁹
CEM I + 2,0PbCrO ₄	$1,00 \cdot 10^{-8}$	$2,30 \cdot 10^{-8}$	$1,60 \cdot 10^{-8}$
CEM I + 2,5PbCrO ₄	$1,00 \cdot 10^{-9}$	9,85 · 10 ⁻¹⁰	$5,71 \cdot 10^{-10}$
CEM I + 3,0PbCrO ₄	$1,00 \cdot 10^{-9}$	$2,45 \cdot 10^{-10}$	6,27 · 10 ⁻¹¹
CEM I + 0,5PbCrO ₄ (20Z)	3,90 · 10 ⁻⁸	7,30 · 10 ⁻⁸	$1,56 \cdot 10^{-7}$
CEM I + 1,0PbCrO ₄ (20Z)	5,00 · 10 -9	$2,00 \cdot 10^{-8}$	$5,10 \cdot 10^{-8}$
CEM I + 1,5PbCrO ₄ (20Z)	8,60 · 10 ⁻⁸	$5,10 \cdot 10^{-8}$	$3,90 \cdot 10^{-8}$
CEM I + 2,0PbCrO ₄ (20Z)	$2,30 \cdot 10^{-8}$	$1,60 \cdot 10^{-8}$	$1,20 \cdot 10^{-8}$
CEM I + 2,5PbCrO ₄ (20Z)	$2,50 \cdot 10^{-8}$	$1,30 \cdot 10^{-8}$	$1,10 \cdot 10^{-8}$
CEM I + 3,0PbCrO ₄ (20Z)	2,60 · 10 -8	$2,60 \cdot 10^{-10}$	$1,25 \cdot 10^{-10}$

Tablica 76. Koeficijenti difuzije iona kroma za uzorke cementa uz dodatak $PbCrO_4$ i $PbCrO_4$ uz 20 mas. % zeolita

Slika 125. Srednje vrijednosti indeksa izluživanja kroma (LI_{sr}) u uzorcima cementa uz različite dodatke PbCrO₄ (- kriterij za ocijenu uspješnosti postupka)

Slika 126. Srednje vrijednosti indeksa izluživanja kroma (LI_{sr}) u uzorcima cementa uz različite dodatke PbCrO₄ i PbCrO₄ uz 20 mas. % zeolita

Slika127. Mehanizam izluživanja kroma određen preko nagiba pravca iz ovisnosti kumulativnog otpuštanja iona kroma o vremenu izluživanja za uzorke cementa uz različite dodatke PbCrO₄ (**a**)) i PbCrO₄ uz 20 mas. % zeolita (**b**))

4.8. Rezultati toplinske analize

Nakon izvršene toplinske analize (TG – DTG) uzoraka cementa uz različite dodatke, rezultati određivanja udjela kalcijeva hidroksida i kemijski vezane vode su prikazani u tablici **77** i slikama **128** - **138**.

Tablica 77. Toplinska analiza uzoraka cementa uz različite dodatke mulja, smjese zas.zeolita i mulja, PbO, PbO + zeolit, PbCrO4, PbCrO4 + zeolit, ABK i ABK + zeolit

Eksperimentalni podatci							e vrijednosti
Uzorak	ΔT_{CH}	Δm_{50-105} ,	Am ma	Am ma	Δm_{50-850} ,	CH, mas.	Kem. vez.
UZUI aK	°C	mg	Δm_{CH} , mg	Δm_{CC} , mg	mg	%	H ₂ O, mas. %
C2M	400 - 550	0,16	0,92	0,25	2,65	25,31	9,26
C5M	400 - 550	0,19	0,88	0,38	2,76	23,03	9,22
C10M	410 - 550	0,22	0,93	0,51	3,41	20,07	11,33
C20M	410 - 550	0,19	0,55	0,43	2,61	14,76	14,48
C5ZZ20M	415 - 550	0,20	1,00	0,54	3,25	22,93	9,28
C10ZZ20M	415 - 550	0,19	0,69	0,32	2,27	21,24	9,87
C20ZZ20M	409 - 550	0,15	0,57	0,26	2,08	16,79	12,13
C30ZZ20M	405 - 530	0,28	0,86	0,79	3,97	13,03	14,57
C5ZZ30M	400 - 550	0,22	1,03	0,71	3,79	23,25	11,08
C10ZZ30M	405 - 540	0,20	0,70	0,39	2,49	21,05	10,87
C20ZZ30M	415 - 550	0,24	0,84	0,29	3,14	16,71	13,27
C30ZZ30M	420 - 550	0,28	0,86	0,79	3,97	12,50	14,74
C5ZZ40M	407 - 550	0,20	0,82	0,26	2,68	23,58	10,84
C10ZZ40M	412 - 540	0,19	0,78	0,35	2,62	21,27	10,61
C20ZZ40M	420 - 560	0,30	1,00	0,44	3,81	16,76	13,19
C30ZZ40M	400 - 530	0,12	0,26	0,13	1,24	12,32	17,49
C5ZZ50M	410 - 550	0,20	0,86	0,42	2,82	23,14	9,61
C10ZZ50M	425 - 560	0,24	1,00	0,76	3,82	20,13	10,98
C20ZZ50M	430 - 560	0,29	0,92	0,73	3,84	16,07	12,68
C30ZZ50M	430 - 580	0,34	1,00	0,72	4,91	11,48	16,12
C0,2PbO	403 - 550	0,16	0,80	0,20	2,32	26,51	9,36
C0,3PbO	405 - 540	0,19	0,68	0,36	2,24	24,84	9,05
C0,4PbO	405 - 550	0,17	0,71	0,20	2,15	25,45	9,29
C0,5PbO	415 - 550	0,20	0,77	0,32	2,41	24,59	8,82
C0,6PbO	415 - 545	0,18	0,75	0,38	2,39	24,87	8,76
C0,7PbO	408 - 550	0,14	0,69	0,22	2,08	24,90	9,05
C0,2PbO20Z	420 - 570	0,24	0,77	0,31	2,88	15,89	12,33
C0,3PbO20Z	420 - 545	0,17	0,51	0,25	2,02	15,70	13,27
C0,4PbO20Z	430 - 550	0,21	0,58	0,40	2,48	14,70	13,24
C0,5PbO20Z	430 - 560	0,24	0,72	0,30	2,79	15,58	13,44
C0,6PbO20Z	425 - 550	0,18	0,53	0,24	2,03	15,63	13,08
C0,7PbO20Z	430 - 550	0,16	0,61	0,39	2,47	15,42	14,01
C0,5PbCrO ₄	420 - 550	0,18	0,71	0,33	2,42	23,28	9,66
C1,0PbCrO ₄	410 - 560	0,19	0,83	0,27	2,61	24,00	9,56
C1,5PbCrO ₄	410 - 550	0,17	0,69	0,25	2,27	23,05	9,74

Eksperimentalni podatci							te vrijednosti
Uzorak	ΔT _{CH} / °C	Δm ₅₀₋₁₀₅ , mg	Δm _{CH} , mg	Δm _{CC} , mg	Δm ₅₀₋₈₅₀ , mg	CH, mas. %	Kem. vez. H ₂ O, mas. %
C2,0PbCrO ₄	410 - 545	0,18	0,73	0,48	2,72	21,66	9,88
C2,5PbCrO ₄	405 - 550	0,20	0,70	0,30	2,48	21,60	10,15
C3,0PbCrO ₄	410 - 550	0,20	0,68	0,30	2,44	21,71	10,35
C0,5PbCrO ₄ (20Z)	415 - 560	0,21	0,63	0,27	2,53	14,76	12,77
C1,0PbCrO ₄ (20Z)	415 - 560	0,18	0,62	0,32	2,59	14,25	13,10
C1,5PbCrO ₄ (20Z)	410 - 560	0,19	0,56	0,10	2,21	14,61	13,97
C2,0PbCrO ₄ (20Z)	430 - 550	0,20	0,61	0,43	2,80	13,11	13,24
C2,5PbCrO ₄ (20Z)	420 - 545	0,16	0,57	0,33	2,56	12,56	13,17
C3,0PbCrO ₄ (20Z)	420 - 530	0,21	0,48	0,46	2,47	11,21	12,74
C1,0ABK	410 - 540	0,23	0,82	0,54	3,13	21,08	9,73
C2,0ABK	415 - 540	0,29	0,80	0,83	3,79	17,25	9,89
C3,0ABK	410 - 530	0,25	0,65	0,82	3,18	16,75	9,68
C4,0ABK	410 - 525	0,30	0,51	0,99	3,24	13,18	9,81
C5,0ABK	430 - 530	0,32	0,37	1,38	3,58	9,21	10,08
C1,0ABK20Z	420 - 540	0,30	0,64	0,94	3,90	10,57	13,07
C2,0ABK20Z	420 - 540	0,39	0,52	0,63	3,54	9,11	14,19
C3,0ABK20Z	420 - 540	0,22	0,30	0,33	2,33	7,45	14,77
C4,0ABK20Z	430 - 520	0,38	0,27	0,70	3,18	5,27	15,21
C5,0ABK20Z	430 - 520	0,37	0,26	0,69	3,25	4,83	15,60

Tablica 77 – nastavak

 ΔT_{CH} – temperaturni interval razlaganja Ca(OH)₂

 $\Delta m_{50-105}^{o} C$ – gubitak mase sušenjem

 Δm_{CH} – promjena mase u području razlaganja Ca(OH)_2

 Δm_{CC} - promjena mase u području dekarbonizacije CaCO₃

 Δm_{50-850}^{o} C – ukupni gubitak mase

CH – maseni udio $Ca(OH)_2$

Kem. vez. H_2O – maseni udio ostale kemijski vezane vode u uzorku

Slika 128. Ovisnost sadržaja kalcijeva hidroksida i kemijski vezane vode (izraženi na 100 % mase cementa) o dodatku mulja

Slika 129. Ovisnost sadržaja kalcijeva hidroksida i kemijski vezane vode (izraženi na 100 % mase cementa) o dodatku zas. zeolita (uz 20 mas. % mulja u smjesi)

Slika 130. Ovisnost sadržaja kalcijeva hidroksida i kemijski vezane vode (izraženi na 100 % mase cementa) o dodatku zas. zeolita (uz 30 mas. % mulja u smjesi)

Slika 131. Ovisnost sadržaja kalcijeva hidroksida i kemijski vezane vode (izraženi na 100 % mase cementa) o dodatku zas. zeolita (uz 40 mas. % mulja u smjesi)

Slika 132. Ovisnost sadržaja kalcijeva hidroksida i kemijski vezane vode (izraženi na 100 % mase cementa) o dodatku zas. zeolita (uz 50 mas. % mulja u smjesi)

Slika 133. Ovisnost sadržaja kalcijeva hidroksida i kemijski vezane vode (izraženi na 100 % mase cementa) o dodatku PbO

Slika 134. Ovisnost sadržaja kalcijeva hidroksida i kemijski vezane vode (izraženi na 100 % mase cementa) o dodatku PbO (uz 20 mas. % zeolita)

Slika 135. Ovisnost sadržaja kalcijeva hidroksida i kemijski vezane vode (izraženi na 100 % mase cementa) o dodatku PbCrO₄

Slika 136. Ovisnost sadržaja kalcijeva hidroksida i kemijski vezane vode (izraženi na 100 % mase cementa) o dodatku PbCrO4 (uz 20 mas. % zeolita)

Slika 137. Ovisnost sadržaja kalcijeva hidroksida i kemijski vezane vode (izraženi na 100 % mase cementa) o dodatku amonijeva bikromata

Slika 138. Ovisnost sadržaja kalcijeva hidroksida i kemijski vezane vode (izraženi na 100 % mase cementa) o dodatku amonijeva bikromata (uz 20 mas. % zeolita)

4.9. Rezultati infracrvene spektroskopije

Rezultati snimanja infracrvenih spektara uzoraka portland cementa uz različite dodatke mulja, zas. zeolita, PbO, PbCrO₄ i amonijeva bikromata prikazani su na slikama **139** - **149**.

Slika 139. FTIR spektri uzoraka portland cementa uz različite dodatke mulja

Slika 140. FTIR spektri uzoraka portland cementa uz različite dodatke zas. zeolita (uz 20 mas. % mulja u smjesi)

Slika 141. FTIR spektri uzoraka portland cementa uz različite dodatke zas. zeolita (uz 30 mas. % mulja u smjesi)

Slika 142. FTIR spektri uzoraka portland cementa uz različite dodatke zas. zeolita (uz 40 mas. % mulja u smjesi)

Slika 143. FTIR spektri uzoraka portland cementa uz različite dodatke zas. zeolita (uz 50 mas. % mulja u smjesi)

Slika 144. FTIR spektri uzoraka portland cementa uz različite dodatke PbO

Slika 145. FTIR spektri uzoraka portland cementa uz različite dodatke PbO (uz 20 mas. % zeolita u uzorku)

Slika 146. FTIR spektri uzoraka portland cementa uz različite dodatke PbCrO₄

Slika 147. FTIR spektri uzoraka portland cementa uz različite dodatke PbCrO₄ (uz 20 mas. % zeolita u uzorku)

Slika 148. FTIR spektri uzoraka portland cementa uz različite dodatke amonijeva bikromata

Slika 149. FTIR spektri uzoraka portland cementa uz različite dodatke amonijeva bikromata (uz 20 mas. % zeolita u uzorku)

4. 10. Rezultati ispitivanja tlačne i savojne čvrstoće cementnih kompozita

U tablicama **78** i **79** prikazani su rezultati ispitivanja tlačne i savojne čvrstoće cementnih mortova bez dodataka i uz različite dodatke mulja i smjese mulja i zasićenog zeolita.

	Tlačna čvrstoća, MPa								
		CEM I	C2M	C5M	C10M	C10ZZ20M	C20ZZ20M	C30ZZ20M	
	1 dan	10,03	8,96	10,88	*	7,39	4,92	4,22	
eme	2 dana	27,42	26,08	27,63	19,43	21,30	16,67	11,34	
Vrij6 idrat	7 dana	33,52	32,93	33,98	32,63	32,83	26,57	22,23	
غ.	28 dana	51,27	46,78	47,68	40,10	45,12	33,07	33,97	

Tablica 78. Tlačne čvrstoće cementnih mortova bez i s različitim dodatcima

* - uzorak se raspao

Tablica '	79. Save	oine (čvrstoće	cementnih	mortova	he7	i s	različitim	dodatcin	na
aonca	1. Dure	Juc	CVISIOCC	cementinin	monovu	UU_{λ}	is	<i>iuz,iiciiin</i>	uouuiciii	iu

	Savojna čvrstoća, MPa							
		CEM I	C2M	C5M	C10M	C10ZZ20M	C20ZZ20M	C30ZZ20M
	1 dan	2,22	2,09	2,58	*	1,93	1,50	1,10
eme	2 dana	4,14	4,18	4,25	3,34	3,73	3,03	2,40
Vrije idrat	7 dana	5,36	5,39	5,98	5,20	5,66	3,85	3,59
<u>-</u>	28 dana	5,61	5,09	4,76	4,78	5,76	4,08	4,93

* - uzorak se raspao

5. Rasprava

Zbog kompleksnosti sastava portland cementa i dodataka koji sadrže teške metale, proces hidratacije je vrlo složen. Tijekom hidratacije odvija se cijeli niz međusobnih kemijskih reakcija između sastojaka cementa i sastojaka iz sastava dodataka u vodenom mediju. Te se reakcije međusobno preklapaju i odvijaju različitim brzinama. Ovakav reakcijski sustav cement-dodatak-voda, s vremenom prelazi iz lakoobradljive cementne paste u čvrstu kamenu sličnu tvar.

5.1. Utjecaj dodataka na vrijeme vezanja portland cementa

Utjecaj dodatka mulja i zeolita na vrijeme vezanja ispitivan je na cementnim pastama. Rezultati ispitivanja vremena vezanja Vicatovim aparatom prikazani su na slikama **29 - 35**. Uočeno je da dodatak mulja pomiče početak i kraj vezanja prema kasnijim vremenima. Dodatak zas. zeolita u sustav cement-mulj smanjuje negativan utjecaj mulja na vrijeme vezanja cementa. Naime, Zn^{2+} ioni iz mulja odgađaju ranu hidrataciju C₃S-a, koji bi mogli nastati iz kalcijeva cinkata prema reakcijama **16 - 18**:

$$Zn^{2+} + 2OH^{-} \rightarrow Zn(OH)_{2}$$
(16)

 $Zn(OH)_2 + 2OH^- \rightarrow 2H_2O + ZnO_2^{2-}$ (17)

 $2ZnO_2^{2^-} + C_3S/O - Ca^{2^+} + 6H_2O \rightarrow C_3S/O - CaZn_2(OH)_6 \cdot 2H_2O + 2OH^-$ (18)

Kalcijev cinkat prekriva površinu zrna C_3S -a te spriječava transport materijala potrebnog za nastavak hidratacije C_3S -a.³ Zapravo, pH suspenzije C_3S -a i Zn²⁺ iona je ispod 12 i ne dolazi do taloženja portlandita. Tek u kasnijim vremenima hidratacije, pH raste preko 12,5 i dolazi do otapanja kalcijeva cinkata. Kao rezultat toga, dolazi do ubrzane hidratacije C_3S -a i stupanj hidratacije je veći nego kod C_3S -a bez dodatka cinka.¹²⁴ Kada se u cementni sustav doda zeolit, dolazi do pucanja alumosilikatne strukture pod utjecajem OH⁻ iona i pri visokom pH. Depolimerizirane molekule [SiO(OH)₃]⁻ i [Al(OH)₄]⁻ prelaze u otopinu i reagiraju s Ca²⁺ ionima te formiraju hidratizirane produkte kalcijeva silikata i kalcijeva aluminata (reakcije **19** i **20**). Ti produkti su vrlo slični produktima nastalim tijekom hidratacije cementa.¹²⁵

$$^{3+}$$
Si-O-Si³⁺ + 8OH⁻ $\rightarrow 2[SiO(OH)_3]^-$ (19)

$${}^{3+}\text{Si-O-Al}^{2+} + 7\text{OH}^{-} \rightarrow [\text{SiO(OH)}_3]^{-} + [\text{Al}(\text{OH})_4]^{-}$$

$$\tag{20}$$

Ovi produkti imaju tendenciju da očvrsnu i pridonesu razvoju mehaničke čvrstoće cementnog materijala. Pucolanska svojstva zeolita se razvijaju tijekom reakcije SiO₂ i Al₂O₃ s Ca(OH)₂ nastalim u procesu hidratacije i pretvara kalcijev hidroksid u C-S-H gel i aluminate. Kao rezultat toga, mikrostruktura nastalog cementnog produkta je poboljšana i produkt postaje nepropustljiv.¹²⁶ Prema Chapellovu testu, 0,555 grama kalcijeva hidroksida reagira s 1 gramom zeolita, što upućuje na dobru pucolansku aktivnost. Pucolanska aktivnost zeolita ovisi o njegovom kemijskom i mineralnom sastavu.

Na slikama **42** – **48** prikazana su elektrokemijska mjerenja vremena vezanja upotrebom Pb – Cu elektrode za uzorke uz dodatak mulja i zeolita. Dobiveni rezultati su uspoređeni s rezultatima mjerenja Vicatovom metodom. Iz rezultata je uočeno da, kao i kod Vicatove metode, dolazi do pomicanja početka i kraja vezivanja prema kasnijim vremenima. Promjena potencijala se ne mijenja sve do početka vezanja. Kod početka vezanja registrira se nagli porast promjene potencijala pod utjecajem uvučenog zraka u cementnu pastu kada dolazi do oksidacije bakrene elektrode. Stvaranje oksidnog sloja na površini elektrode dovodi do promjene elektrodnog potencijala. Usporedbom rezultata vremena vezanja uočeno je znatno odstupanje elektrokemijskih mjerenja od mjerenja dobivenih Vicatovim aparatom te je vidljivo da elektrokemijska metoda nije pogodna za korištenje u sustavu s dodatkom mulja i smjese mulja i zeolita (tablica **80**).

	Vicat		Elektrokemijs	ska metoda
Uzorak	Početak vezanja,	Kraj vezanja,	Početak vezanja,	Kraj vezanja,
	min	min	min	min
C2M	280	363	205	310
C5M	564	659	390	470
C10M	1125	1480	965	1205
C20M	1182	1662	1195	1620
C10ZZ	247	329	240	275
C20ZZ	226	308	195	260
C30ZZ	262	357	210	305
C40ZZ	226	306	199	265
C5Z	246	326	195	260
C10Z	252	326	280	345

Tablica 80. Prikaz vremena vezanja određenih metodom po Vicatu i elektrokemijskommetodom uzoraka cementa uz različite dodatke

Tablica 80 – nastavak

	Vicat		Elektrokemijska metoda		
Uzorak	Početak vezanja,	Krai vezania, min	Početak vezanja,	Krai vezania min	
	min	Kraj vezanja, mm	min	Kraj vezanja, nim	
C20Z	227	312	240	310	
C30Z	245	333	245	325	
C5ZZ20M	247	319	195	275	
C10ZZ20M	261	345	235	285	
C20ZZ20M	456	543	280	345	
C30ZZ20M	543	632	290	360	
C5ZZ30M	239	315	300	390	
C10ZZ30M	301	383	255	345	
C20ZZ30M	615	701	575	650	
C30ZZ30M	879	1091	800	895	
C5ZZ40M	244	323	230	320	
C10ZZ40M	445	528	290	380	
C20ZZ40M	742	854	600	665	
C30ZZ40M	974	1368	910	965	
C5ZZ50M	259	343	250	285	
C10ZZ50M	603	690	625	695	
C20ZZ50M	1213	1362	1035	1165	
C30ZZ50M	1343	1558	1195	1300	
C0,2PbO	278	345	250	315	
C0,3PbO	425	485	340	405	
C0,4PbO	583	650	575	630	
C0,5PbO	836	911	675	755	
C0,6PbO	867	934	780	930	
C0,7PbO	1018	1083	960	1120	
C0,2PbO20Z	312	391	340	380	
C0,3PbO20Z	337	416	440	520	
C0,4PbO20Z	374	446	520	600	
C0,5PbO20Z	582	651	630	740	
C0,6PbO20Z	623	698	715	830	
C0,7PbO20Z	856	930	765	885	
C0,5PbCrO ₄	254	336	325	390	
C1,0PbCrO ₄	267	350	350	415	
C1,5PbCrO ₄	293	375	480	550	
C2,0PbCrO ₄	338	421	635	710	

Tabl	ica	80 –	nastavak

	Vicat		Elektrokemijska metoda		
Uzorak	Početak vezanja,	Kraj vezanja,	Početak vezanja,	Kraj vezanja,	
	min	min	min	min	
C2,5PbCrO ₄	372	450	725	770	
C3,0PbCrO ₄	397	479	720	795	
C0,5PbCrO ₄ (20Z)	251	332	295	375	
C1,0PbCrO ₄ (20Z)	257	342	315	385	
C1,5PbCrO ₄ (20Z)	285	368	345	425	
C2,0PbCrO ₄ (20Z)	319	402	450	535	
C2,5PbCrO ₄ (20Z)	364	445	705	800	
C3,0PbCrO ₄ (20Z)	388	469	725	795	
C0,5ABK	211	286	175	210	
C1,0ABK	233	318	190	245	
C1,5ABK	224	299	200	245	
C2,0ABK	225	303	210	260	
C2,5ABK	206	283	245	300	
C3,0ABK	195	280	235	300	
C4,0ABK	198	282	220	270	
C5,0ABK	191	274	205	275	
C0,5ABK20Z	238	320	245	310	
C1,0ABK20Z	243	319	250	300	
C1,5ABK20Z	235	302	245	290	
C2,0ABK20Z	200	268	200	270	
C2,5ABK20Z	182	251	240	305	
C3,0ABK20Z	170	246	235	290	
C4,0ABK20Z	172	247	220	285	
C5,0ABK20Z	194	284	210	280	

Utjecaj PbO na vrijeme vezanja prikazan je na slikama **36** i **49**. Dodatak PbO odgađa početak i kraj vezanja. Thevenin i Pera¹²⁷ su pokazali da je olovo s portland cementom stabilizirano slijedećim mehanizmima:

 $C-S-H + Pb \rightarrow Pb-C-S-H$ (kemisorpcija) (21)

 $C-S-H + Pb \rightarrow Pb-S-H + Ca (supstitucija)$ (22)

 $Pb + OH + Ca + SO_4 \rightarrow miješane soli (taloženje)$ (23)

Pri niskim pH vrijednostima PbOH⁺ je dominantan oblik olovnih iona. Pri visokim vrijednostima pH, olovo pravi netopljive hidroksidne precipitate. S obzirom na

alkalnu sredinu cementnog matriksa, olakšana je imobilizacija olova kroz upravo stvaranje ovih hidroksida. Gougar i suradnici¹²⁸ su pokazali da Pb²⁺ ioni zamjenjuju Ca u etringitu, a ne u C-S-H strukturi gdje se olovo taloži kao hidroksid ili karbonat.

Kao i uz dodatak mulja, dodatak zeolita u sustav cement-PbO smanjuje negativan utjecaj olova na hidratacijske procese cementa (slike **37** i **50**). Usporedbom rezultata vremena vezanja određenih Vicatovom metodom i elektrokemijskom metodom, uočava se značajnije odstupanje u vremenima vezanja te je vidljivo da elektrokemijska metoda nije pogodna za korištenje u sustavu cement-PbO (tablica **80**).

Utjecaj olovo (II) kromata na vrijeme vezanja portland cementa prikazan je na slikama **38** i **51**. Dodatak iona olova i kroma u cementni sustav odgađa početak i kraj vezanja. Dodatak zeolita smanjuje negativan utjecaj teških metala (slike **39** i **52**). Usporedbom rezultata vremena vezanja uočeno je značajnije odstupanje u vremenima te je vidljivo da elektrokemijska metoda nije pogodna za sustav PbCrO₄-cement (tablica **80**).

Utjecaj amonijeva bikromata na vrijeme vezanja prikazan je na slikama 40 i 53. Dodatak amonijeva bikromata ubrzava početak i kraj vezanja cementnih uzoraka. Dodatak zeolita smanjuje utjecaj ABK na vrijeme vezanja (slike 41 i 54).

Pera i suradnici⁵³ su pokazali da se stabilizacija Cr^{6+} iona u hidrauličnom vezivu odvija prema sljedećim mehanizmima koji se mogu odvijati istovremeno: adicija, supstitucija (Cr-C-S-H, Cr-etringit) ili taloženje novih spojeva. Stephan i suradnici¹²⁹ su uočili da se solidifikacija kroma vrši preko formiranja Ca-Cr-aluminata te su naveli postojanje faza Ca₄Al₆O₁₂CrO₄ i Ca₆Al₄Cr₂O₁₅.

5.1.1. Razvoj matematičkih modela za procjenu početka i kraja vezanja (Vicat) cementnih uzoraka uz različite dodatke

Rezultati određivanja vremena vezanja cementnih uzoraka uz dodatke prikazano je u tablici **80**. Iz ovisnosti vremena vezanja o udjelu dodatka određene su funkcijske ovisnosti (slika **150** i tablica **81**) pomoću kojih je moguće procijeniti početak i kraj vezanja za bilo koji udjel dodatka. Na slici **150** prikazan je primjer funkcijske ovisnosti vremena vezanja o dodatku mulja. Na isti način je moguće prikazati modele koji se odnose na ostale dodatke.

Slika 150. Prikaz funkcijske ovisnosti vremena vezanja o udjelu mulja

Tablica 81. Prikaz modela (funkcija) za procjenu vremena vezanja cementnih uzoraka

Uzorak	Model početka vezanja	Model kraja vezanja
CEM I + mulj	$y = 0,0329x^4 - 1,7334x^3 + 24,784x^2 -$	$z = -0.9376x^3 + 23.219x^2 -$
	17,898x+230	21,832x+312,01
CEM I + zas. zeolit	$y = -0,0009x^4 + 0,0718x^3$	$z = -0,012x^4 + 0,0892x^3 -$
	-1,6917x ² +12,367x+230	2,0625x ² +14,983x+308
CEM I + zeolit	$y = 0,0007x^4 - 0,0266x^3$	$z = -9E - 05x^4 + 0,0164x^3$
	$+0,0777x^{2}+3,39x+230$	$-0,5903x^{2}+6,1533x+308$
CEM I + ZZ(20M)	$y = -0,0042x^4 + 0,2043x^3$	$z = -0,0031x^4 + 0,1438x^3$
	$-2,396x^{2}+10,793x+230$	-1,3063x ² +5,53x+308
CEM I + ZZ(30M)	$y = -0,0024x^4 + 0,0932x^3 +$	$z = -0,0011x^4 + 0,0391x^3 + 0,8307x^2 -$
	$0,0767x^2 - 0,6167x + 230$	3,59x + 308
CEM I + ZZ(40M)	$y = -0.0453x^3 + 2.1028x^2 + 2.7735x$	$z = -0,0107x^3 + 1,2435x^2 + 8,0242x +$
	+ 218,86	294,94
CEM I + ZZ(50M)	$y = -0,1428x^3 + 5,8442x^2 - 9,3585x$	$z = -0.1478x^3 + 6.2095x^2 - 11.273x +$
	+ 217,51	297,19
CEM I + PbO	$y = -5482,6x^3 + 6605,9x^2 - 833,66x$	$z = -5900,9x^3 + 7089,4x^2 - 987,14x +$
	+ 228,37	306,77
CEM I + PbO(20Z)	$y = -3122, 2x^4 + 5965, 2x^3 -$	$z = -3804,5x^4 + 7177,7x^3 - 2894,4x^2 +$
	$2223,6x^2 + 583,1x + 231,33$	687,93x + 309,18
CEM I + PbCrO ₄	$y = -8,3636x^4 + 45,293x^3 -$	$z = -7,2727x^4 + 40,525x^3 - 60,97x^2 +$
	$63,848x^2 + 64,997x + 230,5$	70,99x + 308,69
CEM I + PbCrO ₄ (20Z)	$y = -10x^4 + 56,222x^3 - 83,5x^2 +$	$z = -\overline{9,4545x^4 + 54,061x^3 - 84,394x^2 + }$
	67,04x + 230,33	75,504x + 308,2

uz dodatak

Uzorak	Model početka vezanja	Model kraja vezanja
CEM I + ABK	$y = 0,5305x^6 - 9,169x^5 + 59,821x^4 -$	$z = 1,2625x^6 - 19,374x^5 + 112,06x^4 -$
	$180,13x^3 + 241,08x^2 - 114,73x +$	$299,97x^3 + 360,33x^2 - 153,12x +$
	229,6	307,38
CEM I + ABK(20Z)	$y = 0.9137x^6 - 13.706x^5 + 76.003x^4 - $	$z = 1,0331x^6 - 14,616x^5 + 75,162x^4 -$
	$184,59x^3 + 170,42x^2 - 33,693x +$	$163,47x^3 + 119,71x^2 - 5,0906x +$
	230,13	308,11

Tablica 81 – nastavak

Primjer određivanja početka i kraja vezanja za dodatak mulja od 3 mas. % preko određenog modela:

$$x = 3 \text{ mas. }\%$$

$$y = 0.0329x^{4} - 1.7334x^{3} + 24.784x^{2} - 17.898x + 230$$

$$y = 0.0329 \cdot 3^{4} - 1.7334 \cdot 3^{3} + 24.784 \cdot 3^{2} - 17.898 \cdot 3 + 230$$

$$y = 355.23 \text{ min}$$
(24)

$$z = -0.9376x^{3} + 23.219x^{2} - 21.832x + 312.01$$

$$z = -0.9376 \cdot 3^{3} + 23.219 \cdot 3^{2} - 21.832 \cdot 3 + 312.01$$

$$z = 430.17 \text{ min}$$
(25)

gdje je:

x – dodatak mulja, mas. %,

y – početak vezanja, min, i

z-kraj vezanja, min.

5.2. Utjecaj dodataka na toplinu hidratacije portland cementa

Termonaponske vrijednosti (ΔU) određene diferencijalnom mikrokalorimetrijom za različite dodatke prikazane su na slikama **55** – **67**. Tijekom hidratacije javljaju se efekti koji se očituju u obliku maksimuma i minimuma u različitim vremenima. Prvi pikovi kratko traju i javljaju se odmah nakon kontakta vode i cementnog kompozita. U tom početnom periodu odvijaju se reakcije kvašenja, otapanja i hidrolize. Neposredno nakon kontakta cementa s vodom nastupa izmjena iona između čvrste i tekuće faze. Visoka topljivost nekih sastojaka klinkera dovodi do naglog rasta koncentracije Caiona, aluminat-iona, sulfata i alkalija. Formiranjem prvih hidratacijskih produkata razvije se velika količina topline. Oblik, položaj i veličina glavnog maksimuma ovisi o iznosu dodatka u cementnom kompozitu. Kod uzorka cementa bez dodatka registriran je vrlo izražen glavni maksimum, koji s povećanjem udjela mulja, zeolita, smjese zeolita i mulja, PbO i amonijeva bikromata postaje sve manje izražen. Povećanjem dodataka maksimumi poprimaju niže vrijednosti (osim kod dodatka PbCrO₄), a pojava maksimuma registrirana je u kasnijim vremenima hidratacije, osim za amonijev bikromat gdje je pojava glavnog maksimuma u ranijim vremenima. Nakon maksimuma slijedi period usporavanja hidratacije koji je karakteriziran malom količinom razvijene topline i smanjenom ukupnom brzinom hidratacije.

Vrijednosti topline hidratacije, brzine oslobađanja topline i relativnog stupnja hidratacije cementnih uzoraka uz različite dodatke prikazani su u tablicama 9 - 71, i grafički na slikama 151 - 189.

Slika 151. Ovisnost topline hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele mulja

Slika 152. Ovisnost brzine oslobađanja topline o vremenu hidratacije uzoraka cementa uz različite udjele mulja

Slika 153. Ovisnost stupnja hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele mulja

Slika 154. Ovisnost topline hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele zas. zeolita

Slika 155. Ovisnost brzine oslobađanja topline o vremenu hidratacije uzoraka cementa uz različite udjele zas. zeolita

Slika 156. Ovisnost stupnja hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele zas. zeolita

Slika 157. Ovisnost topline hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele zeolita

Slika 158. Ovisnost brzine oslobađanja topline o vremenu hidratacije uzoraka cementa uz različite udjele zeolita

Slika 159. Ovisnost stupnja hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele zeolita

Slika 160. Ovisnost topline hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele zas. zeolita (uz 20 mas. % mulja u smjesi)

Slika 161. Ovisnost brzine oslobađanja topline o vremenu hidratacije uzoraka cementa uz različite udjele zas. zeolita (uz 20 mas. % mulja u smjesi)

Slika 162. Ovisnost stupnja hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele zas. zeolita (uz 20 mas. % mulja u smjesi)

Slika 163. Ovisnost topline hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele zas. zeolita (uz 30 mas. % mulja u smjesi)

Slika 164. Ovisnost brzine oslobađanja topline o vremenu hidratacije uzoraka cementa uz različite udjele zas. zeolita (uz 30 mas. % mulja u smjesi)

Slika 165. Ovisnost stupnja hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele zas. zeolita (uz 30 mas. % mulja u smjesi)

Slika 166. Ovisnost topline hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele zas. zeolita (uz 40 mas. % mulja u smjesi)

Slika 167. Ovisnost brzine oslobađanja topline o vremenu hidratacije uzoraka cementa uz različite udjele zas. zeolita (uz 40 mas. % mulja u smjesi)

Slika 168. Ovisnost stupnja hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele zas. zeolita (uz 40 mas. % mulja u smjesi)

Slika 169. Ovisnost topline hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele zas. zeolita (uz 50 mas. % mulja u smjesi)

Slika 170. Ovisnost brzine oslobađanja topline o vremenu hidratacije uzoraka cementa uz različite udjele zas. zeolita (uz 50 mas. % mulja u smjesi)

Slika 171. Ovisnost stupnja hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele zas. zeolita (uz 50 mas. % mulja u smjesi)

Rezultati pokazuju da iznos dodanog mulja te smjese mulja i zeolita izravno utječe na konačne vrijednosti topline hidratacije. Povećanjem udjela mulja od 2 – 20 mas. % i smjese zasićenog zeolita (udio mulja 20 - 50 mas. % u smjesi) od 5 - 30 mas. %, opada konačna vrijednost topline hidratacije u prvih 48 sati hidratacije. Uzorak cementa C2M razvija toplinu hidratacije od 175,4056 J/g, dok C20M razvija 19,3134 J/g. Dodatkom zeolita u sustav cement-mulj smanjuje se negativni utjecaj mulja na razvijenu toplinu hidratacije (C5ZZ20M – 179,9257 J/g i C30ZZ20M – 127,9755 J/g). Vrijednosti topline hidratacije za uzorak bez dodatka iznosi 188,2810 J/g. Kao što je vidljivo, pad topline hidratacije dodatkom mulja je veći nego dodatkom smjese mulja i zeolita.

Slika 172. Ovisnost topline hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele olovo(II) oksida

Slika 173. Ovisnost brzine oslobađanja topline o vremenu hidratacije uzoraka cementa uz različite udjele olovo(II) oksida

Slika 174. Ovisnost stupnja hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele olovo(II) oksida

Slika 175. Ovisnost topline hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele olovo(II) oksida (uz 20 mas. % zeolita u uzorku)

Slika 176. Ovisnost brzine oslobađanja topline o vremenu hidratacije uzoraka cementa uz različite udjele olovo(II) oksida (uz 20 mas. % zeolita u uzorku)

Slika 177. Ovisnost stupnja hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele olovo(II) oksida (uz 20 mas. % zeolita u uzorku)

Cementni uzorak s 0,2 mas. % PbO, C0,2PbO, razvija čak nešto veću toplinu hidratacije od uzorka bez dodatka i ona iznosi 192,5572 J/g, dok uzorak C0,7PbO razvija toplinu od 107,2194 J/g.¹³⁰ Dodatkom 20 mas. % zeolita u sustav cement-PbO smanjuje se negativan utjecaj olovo(II) oksida na razvijenu toplinu. Tako uzorak C0,2PbO20Z razvija toplinu 170,3376 J/g, a uzorak C0,7PbO20Z 152,2238 J/g.

Uz dodatak PbCrO₄ vrijednosti toplina hidratacije su iznad vrijednosti za uzorak bez dodatka. Nadalje, uzorak C0,5PbCrO₄ razvija toplinu od 286,4784 J/g, dok C3,0PbCrO₄ razvija 205,1535 J/g. Dodatkom zeolita dolazi do snižavanja toplina hidratacije.

Slika 178. Ovisnost topline hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele olovo(II) kromata

Slika 179. Ovisnost brzine oslobađanja topline o vremenu hidratacije uzoraka cementa uz različite udjele olovo(II) kromata

Slika 180. Ovisnost stupnja hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele olovo(II) kromata

Slika 181. Ovisnost topline hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele olovo(II) kromata (uz 20 mas. % zeolita u uzorku)

Slika 182. Ovisnost brzine oslobađanja topline o vremenu hidratacije uzoraka cementa uz različite udjele olovo(II) kromata (uz 20 mas. % zeolita u uzorku)

Slika 183. Ovisnost stupnja hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele olovo(II) kromata (uz 20 mas. % zeolita u uzorku)

Slika 184. Ovisnost topline hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele amonijeva bikromata (ABK)

Slika 185. Ovisnost brzine oslobađanja topline o vremenu hidratacije uzoraka cementa uz različite udjele amonijeva bikromata (ABK)

Slika 186. Ovisnost stupnja hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele amonijeva bikromata (ABK)

Slika 187. Ovisnost topline hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele amonijeva bikromata (ABK) (uz 20 mas. % zeolita u uzorku)

Slika 188. Ovisnost brzine oslobađanja topline o vremenu hidratacije uzoraka cementa uz različite udjele amonijeva bikromata (ABK) (uz 20 mas. % zeolita u uzorku)

Slika 189. Ovisnost stupnja hidratacije o vremenu hidratacije uzoraka cementa uz različite udjele amonijeva bikromata (ABK) (uz 20 mas. % zeolita u uzorku)

Dodatkom amonijeva bikromata, vrijednosti toplina hidratacije opadaju. Tako uzorak C1,0ABK razvija toplinu 152,8337 J/g, dok uzorak C5,0ABK razvija 115,9056 J/g. Uz dodatak zeolita, dolazi do snižavanja vrijednosti topline hidratacije.

Krivulje brzine oslobađanja topline se ponašaju na isti način kao i krivulje termonapona za sve dodatke u cementni sustav.

Kod krivulja relativnog stupnja hidratacije uočava se sličnost s krivuljama toplina hidratacije. Analiza rezultata pokazuje da relativni stupanj hidratacije ovisi o udjelu dodatka u uzorku cementa. Vidljivo je da povećanjem udjela mulja, smjese mulja i zeolita, PbO i ABK vrijednosti stupnja hidratacije postaju sve niže osim uz dodatak PbCrO₄.

5.2.1. Razvoj matematičkih modela za procjenu ukupno oslobođene topline i pojavu maksimalne brzine hidratacije uzoraka uz različite dodatke

Praćenje ovisnosti ukupno oslobođene topline za vrijeme hidratacije u prvih 48 sati i vremena pojavljivanja maksimuma hidratacije o udjelu dodatka prikazani su u tablici **82** i slici **190**.

Uzorak	Ukupno oslobođena toplina, J/g	Vrijeme pojave maks. na krivulji brzine hidr., h
CEM I	188,2810	9,38
C2M	175,4056	11,98
C5M	152,3619	20,23
C10M	101,3725	35,97
C20M	19,3134	-
C5ZZ	179,1202	10,23
C10ZZ	162,5181	10,35
C20ZZ	148,9293	9,87
C30ZZ	132,0424	9,62
C5Z	198,2013	9,85
C10Z	178,4557	10,68

Tablica 82. Prikaz rezultata ovisnosti ukupne topline hidratacije razvijen	e nakon 48
sati i vremena pojave maksimuma na krivulji brzine hidratacije o udjelu	dodatka

Tablica 82 - nastavak

Uzorak Ukupno oslobođena toplina, J/g	Vrijeme pojave maks. na	
	Okupno oslobodena topinia, j/g	krivulji brzine hidr., h
C20Z	145,0127	10,08
C30Z	142,5214	9,37
C5ZZ20M	179,9257	10,83
C10ZZ20M	171,4998	11,08
C20ZZ20M	147,9340	16,67
C30ZZ20M	127,9755	16,87
C5ZZ30M	184,8268	9,22
C10ZZ30M	173,7904	10,95
C20ZZ30M	178,2838	17,98
C30ZZ30M	108,8498	25,90
C5ZZ40M	185,5740	10,22
C10ZZ40M	166,0183	13,97
C20ZZ40M	123,1153	24,53
C30ZZ40M	94,1736	30,35
C5ZZ50M	137,2377	10,82
C10ZZ50M	167,4329	17,58
C20ZZ50M	93,2653	37,37
C30ZZ50M	67,6023	44,90
С0,2РЬО	192,5572	13,53
C0,3PbO	172,0032	16,70
С0,4РЬО	167,5120	22,30
C0,5PbO	147,4003	23,75
C0,6PbO	130,4055	31,53
С0,7РЬО	107,2194	36,88
C0,2PbO20Z	170,3376	13,13
C0,3PbO20Z	173,0216	13,67
C0,4PbO20Z	139,6138	14,27
C0,5PbO20Z	157,3717	19,80
C0,6PbO20Z	139,8080	19,93
C0,7PbO20Z	152,2238	20,88
C0,5PbCrO ₄	286,4784	12,17
C1,0PbCrO ₄	213,5520	14,97
C1,5PbCrO ₄	209,8864	16,30
C2,0PbCrO ₄	230,4541	16,67
C2,5PbCrO ₄	224,5683	12,05
C3,0PbCrO ₄	205,1535	12,03
Tablica 82 – nastavak		
-----------------------	--	
-----------------------	--	

Uzorak	Ukupno oslobođena toplina, J/g	Vrijeme pojave maks. na
		krivulji brzine hidr., h
C0,5PbCrO ₄ (20Z)	167,8356	10,63
C1,0PbCrO ₄ (20Z)	164,6324	11,98
C1,5PbCrO ₄ (20Z)	149,8462	15,22
C2,0PbCrO ₄ (20Z)	152,3662	16,67
C2,5PbCrO ₄ (20Z)	193,1987	13,50
C3,0PbCrO ₄ (20Z)	212,3546	12,73
C1,0ABK	152,8337	8,07
С2,0АВК	130,5479	5,92
СЗ,0АВК	110,0767	4,98
C4,0ABK	100,6066	5,38
C5,0ABK	115,9056	4,13
C1,0ABK20Z	144,5042	7,25
C2,0ABK20Z	110,1961	4,90
C3,0ABK20Z	95,8600	4,83
C4,0ABK20Z	98,5426	5,28
C5,0ABK20Z	90,2591	5,92

Slika 190. Ovisnost oslobođene topline hidratacije i vremena pojave maks. brzine hidratacije o udjelu mulja

Na slici **190** prikazan je primjer funkcijske ovisnosti oslobođene topline i vremena pojave maks. brzine hidratacije o dodatku mulja. Na isti način je moguće prikazati modele koji se odnose na ostale dodatke.

Pomoću određenih matematičkih modela u tablici **83** moguće je procijeniti ukupno oslobođenu toplinu i vrijeme pojave maksimalne brzine hidratacije za različite dodatke mulja, zeolita, smjese mulja i zeolita, PbO, PbO+zeolit, PbCrO₄, PbCrO₄+zeolit, $(NH_4)_2Cr_2O_7$ i $(NH_4)_2Cr_2O_7$ +zeolit.

Tablica 83. Prikaz modela za određivanje ukupno oslobođene topline i vremena pojavemaksimalne brzine hidratacije za pojedine dodatke

Uzorak	Model ukupno oslobođene	Model vremena pojave
0201ak	topline	maksimalne brzine hidratacije
CEM I + mulj	k = -8,6176x +191,12	v = 2,7344x + 7,7686
CEM I + ZZ(20M)	k = -2,0525x + 189,81	v = 0,2787x + 9,3426
CEM I + ZZ(30M)	k = -2,3262x + 197,05	v = 0,5821x + 7,1189
CEM I + ZZ(40M)	k = -3,3923x + 195,53	v = 0,7622x + 7,782
CEM I + ZZ(50M)	k = -3,872x + 181,1	v = 1,3166x + 6,8937
CEM I + PbO	k = -121,2x + 204,66	v = 39,642x + 6,7196
CEM I + PbO(20Z)	k = -61,126x + 183,67	v = 17,418x + 9,1472
CEM I + PbCrO ₄	$k = -9,7329x^2 + 25,177x + 216,49$	$v = -2,5271x^2 + 8,2536x + 9,2$
CEM I + PbCrO ₄ (20Z)	$k = 21,562x^2 - 56,78x + 190,6$	$v = -1,7276x^2 + 6,6457x + 8,519$
CEM I + ABK	$k = 5,4463x^2 - 42,632x + 189,7$	$v = 0,1875x^2 - 1,9449x + 9,4536$
CEM I + ABK(20Z)	$k = 5,8112x^2 - 47,408x + 186,53$	$v = 0,4473x^2 - 2,9018x + 9,4139$

Primjer proračuna ukupno oslobođene topline i vremena pojave maksimalne brzine hidratacije za dodatak mulja od 3 mas. %:

$$x = 3 \text{ mas. }\%$$

$$k = -8,617x + 191,12$$

$$k = -8,617 \cdot 3 + 191, 12$$

$$k = 165,27 \text{ J/g}$$

$$v = 2,734x + 7,7686$$

$$v = 2,734 \cdot 3 + 7,7686$$

$$v = 15,97 \text{ h}$$
(26)

gdje je:

x – količina dodanog mulja, mas. %,

k – oslobođena toplina, J/g i

v - vrijeme pojave maksimalne brzine hidratacije, h.

5.3. Utjecaj dodataka na specifičnu provodnost cementnih pasti

Mjerenja specifične provodnosti omogućuju praćenje procesa hidratacije, strukturnih promjena i vremena vezanja u cementnim pastama i mortovima.¹³¹ Električna provodnost se javlja pod utjecajem gibanja iona. Kada cement reagira s vodom, dolazi do oslobađanja Ca(OH)₂ tijekom procesa hidratacije te dolazi do potpunog razlaganja alkalijskih sulfata na K⁺, Na⁺ i SO₄²⁻ ione. Vrijednost konduktometrijskog maksimuma ovisi o broju i pokretljivosti ovih iona. Novonastali hidratacijski produkti (C-S-H i etringit) prevlače cementne čestice, što dovodi do stvaranja izolacijskog sloja koji spriječava pokretljivost iona te dovodi do smanjenja provodnosti. Uslijed toga, dolazi do transformacije etringita u monosulfat te porasta osmotskog tlaka oko cementnih čestica, što dovodi do pucanja ovojnice i ubrzanja hidratacije.¹³² Ovaj maksimum odgovara početku vezanja cementne paste.

Ovisnost promjene specifične provodnosti o vremenu hidratacije za uzorke cementa uz dodatak mulja prikazana je na slici **68**. Iz slike i tablice **84** je vidljiva pojava maksimuma specifične provodnosti u periodu od 95 do 550 minuta. Povećanje udjela mulja pomiče pojavu maksimuma prema kasnijim vremenima hidratacije, a vrijednosti maksimalne provodnosti su niže. Rezultati ukazuju da dodatak mulja usporava hidrataciju cementa. Ovi rezultati su u suglasnosti s rezultatima određivanja vremena vezanja Vicat-ovom i elektrokemijskom metodom.

Rezultati specifične provodnosti za uzorke cementa uz različite udjele zeolita te uz konstantan iznos mulja od 3 mas. % prikazani su na slici **69** i tablici **84**. Uz dodatak mulja od 3 mas. % maksimalna provodnost se postiže nakon 175 minuta hidratacije. Dodatkom zeolita od 5 – 35 mas. % maksimalna provodnost se postiže u vremenskom periodu od 180 – 245 minuta. Povećanje udjela zeolita u cementni sustav usporava hidrataciju, a vrijednosti maksimalne provodnosti su niže.

Rezultati specifične provodnosti za uzorke cementa uz različite udjele PbO prikazani su na slici **70** i tablici **84**. Iz rezultata je vidljiva pojava maksimalne provodnosti u periodu od 135 – 460 minuta. Ovo ukazuje na činjenicu da olovo (II) oksid značajno usporava hidrataciju, a vrijednosti maksimalne provodnosti su niže s porastom dodatka.

Dodatkom zeolita od 5 – 30 mas. % u sustav cement-0,3 mas. % PbO, pojava maksimalne provodnosti je pomaknuta prema ranijim vremenima hidratacije, a vrijednosti maksimalne provodnosti su niže (slika **71** i tablica **84**). Dodatak zeolita

smanjuje negativan utjecaj PbO na hidrataciju cementa, a pojava maksimalne provodnosti se kreće u periodu od 195 – 225 minuta.

Rezultati specifične provodnosti za uzorke cementa uz različite udjele PbCrO₄ prikazani su na slici **72** i tablici **84**. Iz rezultata je vidljiva pojava maksimalne provodnosti u periodu od 110 – 260 minuta. Povećanjem udjela olovo(II) kromata pojava maksimalne provodnosti je pomaknuta prema kasnijim vremenima hidratacije uz niže vrijednosti maksimalne provodnosti. Dodatak zeolita od 20 mas. % u reakcijski sustav cement-PbCrO₄ dodatno pomiče pojavu maksimuma prema kasnijim vremenima uz smanjenje maksimalne provodnosti (slika **73** i tablica **84**).

Rezultati specifične provodnosti za uzorke cementa uz različite udjele amonijeva bikromata prikazani su na slici **74** i tablici **84**. Iz rezultata je vidljivo da povećanjem udjela amonijeva bikromata do 1,5 mas. % pojava maksimalne provodnosti je pomaknuta prema kasnijim vremenima.¹³³ Porastom dodatka od 1,5 – 5 mas. % amonijeva bikromata, pojava maksimalne provodnosti je pomaknuta prema ranijim vremenima. Vrijednosti maksimalne provodnosti padaju do dodatka od 4 mas. %, dok za dodatke od 4 i 5 mas. % amonijeva bikromata rastu. Dodatkom zeolita od 20 mas. % u sustav cement-amonijev bikromat, pojava maksimalne provodnosti je pomaknuta prema kasnijim vremenima hidratacije za dodatke amonijeva bikromata od 0,5 i 1,0 mas. %, dok je za sve ostale pomaknuta prema ranijim vremenima hidratacije (slika **75** i tablica **84**). Vrijednosti maks. provodnosti rastu za sve dodatke od 15,30 – 23,74 mS/cm.

5.3.1. Razvoj matematičkih modela za procjenu pojave makimalne provodnosti uz različite dodatke

Praćenje ovisnosti maksimalne provodnosti i vremena pojave maksimuma o udjelu dodatka prikazani su u tablici **84** te grafički na slici **191**.

Uzorak	Početna provodnost,	Maks. provodnost,	Vrijeme maks.
	mS/cm	mS/cm	provodnosti, min
CEM I	19,28	25,47	80
C1,0M	20,06	24,32	95
С2,0М	16,81	24,09	120
С3,0М	15,66	23,11	175
C4,0M	17,55	22,64	240
C5,0M	17,90	21,48	325
C6,0M	17,21	21,51	416
С7,0М	18,67	21,20	550
C5Z3M	16,40	19,58	180
C10Z3M	16,25	17,84	190
C15Z3M	14,64	16,16	200
C20Z3M	13,91	14,58	205
C25Z3M	13,64	13,42	220
C30Z3M	11,38	11,12	235
C35Z3M	10,90	10,46	245
С0,10РЬО	16,88	25,15	135
C0,15PbO	15,80	24,33	165
С0,20РЬО	15,15	23,56	205
C0,25PbO	14,17	22,71	295
C0,30PbO	14,55	22,41	460
C5Z0,3PbO	16,74	21,44	225
C10Z0,3PbO	14,32	18,87	220
C15Z0,3PbO	13,98	17,49	215
C20Z0,3PbO	13,40	16,02	205
C25Z0,3PbO	11,57	13,79	200
C30Z0,3PbO	10,66	12,63	195
C0,05PbCrO ₄	19,06	24,08	110
C0,10PbCrO ₄	18,15	24,14	120
C0,25PbCrO ₄	17,35	23,65	135
C0,50PbCrO ₄	16,27	22,82	175
C0,75PbCrO ₄	17,29	23,71	225
C1,00PbCrO ₄	13,57	19,57	230
C1,50PbCrO ₄	12,29	17,80	215
C2,00PbCrO ₄	13,62	20,59	225
C2,50PbCrO ₄	17,34	21,26	235

Tablica 84. Prikaz rezultata maksimalne provodnosti i vremena pojave maksimuma zarazličite dodatke

Tablica 84 -	nastavak
--------------	----------

Uzorak	Početna provodnost,	Maks. provodnost,	Vrijeme maks.
	mS/cm	mS/cm	provodnosti, min
C3,00PbCrO ₄	17,31	21,73	260
C0,05PbCrO ₄ (20Z)	11,70	15,46	130
C0,10PbCrO ₄ (20Z)	12,13	14,60	135
C0,25PbCrO ₄ (20Z)	12,85	14,64	145
C0,50PbCrO ₄ (20Z)	12,82	14,09	170
C0,75PbCrO ₄ (20Z)	10,99	13,37	195
C1,00PbCrO ₄ (20Z)	10,89	13,59	230
C1,50PbCrO ₄ (20Z)	10,95	13,01	375
C2,00PbCrO ₄ (20Z)	10,78	12,48	535
C2,50PbCrO ₄ (20Z)	12,82	12,65-	580
C3,00PbCrO ₄ (20Z)	10,66	11,88	610
C0,5ABK	20,33	25,45	125
C1,0ABK	20,75	24,07	150
C1,5ABK	22,32	22,81	165
С2,0АВК	22,50	22,83	145
С2,5АВК	22,85	22,61	105
С3,0АВК	21,30	21,61	80
C4,0ABK	27,55	26,33	50
C5,0ABK	29,89	27,82	45
C0,5ABK(20Z)	14,74	15,30	155
C1,0ABK(20Z)	15,55	15,40	185
C1,5ABK(20Z)	17,46	16,72	150
C2,0ABK(20Z)	18,56	17,73	110
C2,5ABK(20Z)	20,45	18,67	70
C3,0ABK(20Z)	22,35	19,18	80
C4,0ABK(20Z)	25,34	22,46	85
C5,0ABK(20Z)	27,24	23,74	85

Iz eksperimentalnih podataka vremena pojave maksimalne provodnosti za pojedine dodatke određeni su modeli (funkcijske ovisnosti) (tablica **85**) pomoću kojih je moguće predvidjeti vrijeme pojave maks. provodnosti (početak vezanja uzorka) za bilo koji dodatak. Na slici **191** prikazan je primjer funkcijske ovisnosti vremena maksimalne provodnosti o dodatku mulja. Na isti način je moguće prikazati modele koji se odnose na ostale dodatke.

Slika 191. Funkcijska ovisnost vremena pojave maksimalne provodnosti o udjelu mulja

Tablica 85. Prikaz modela za određivanje vremena pojave maksimalne provodnosti zapojedine dodatke

Uzorak	Model
CEM I + mulj	$p = 73,994 \cdot e^{0,2879x}$
CEM I + Z(3M)	p = 2,0476x + 170,42
CEM I + PbO	$p = 25507x^3 - 5906,8x^2 + 639,96x + 109,36$
CEM I + Z(0,3PbO)	p = -1,2571x + 232
CEM I + PbCrO ₄	$p = 25,656x^3 - 137,2x^2 + 235,39x + 97,814$
CEM I + PbCrO ₄ (20Z)	$p = -47,773x^3 + 208,63x^2 - 35,99x + 127,66$
CEM I + ABK	$p = 6,0399x^3 - 51,618x^2 + 95,843x + 101,71$
CEM I + ABK(20Z)	$p = -4,6463x^4 + 52,635x^3 - 189,46x^2 + 207,8x + 106,95$

Primjer proračuna vremena pojave maksimalne provodnosti za dodatak mulja od 3 mas. %:

x = 3 mas. %
p = 73,994
$$\cdot e^{0,2879x}$$
 (28)
p = 73,994 $\cdot e^{0,2879 \cdot 3}$
p = 175,51 min

gdje je:

- p-vrijeme pojave maksimalne provodnosti, min,
- x količina dodanog mulja, mas. %.

5.4. Utjecaj dodataka na sadržaj iona u otopinama nakon izluživanja

5.4.1. Određivanje koncentracije iona cinka, pH i specifične provodnosti u otopinama nakon izluživanja uzoraka uz dodatak mulja i smjese mulja i zeolita

Rezultati određivanja kumulativnih udjela iona cinka u otopinama nakon izluživanja uzoraka uz dodatak mulja i smjese mulja i zeolita prikazani su na slikama **76** – **80**. Iz rezultata je vidljivo da s porastom dodatka mulja u pripremljenim uzorcima raste udjel iona cinka u otopinama.¹³⁴ U prvom periodu do 18 sati izluživanja, dolazi do značajnog povećanja udjela do 1,81 mas. % (što se može pripisati ispiranju cinka s površine uzorka). Nakon toga, u drugom periodu do 72 sata izluženi udjel iona cinka u otopinama opada (osim za uzorak C5M), dok u trećem intervalu lagano raste. Ovo povećanje izluživanja može biti ili fizičko uklanjanje iz matriksa (otapanje matriksa), izluživanje pod utjecajem pH zbog amfoternog ponašanja cinka ili kombinacija oba slučaja. Pourbaixov dijagram iona cinka u otopinama jasno pokazuje amfoterno ponašanje cinka, gdje pri pH > 12, dolazi do povećanja izluživanja iona cinka.¹³⁵ Cink pravi hidrokside u alkalnim uvjetima (pH > 8). Cinkov hidroksid je amfoterni spoj koji se ponaša i kao kiselina i kao lužina. U alkalnoj sredini postoji u obliku Zn(OH)₄²⁻ i Zn(OH)₃⁻ iona (slika **192**). Zbog svoje anionske prirode ne mogu se adsorbirati na negativnu površinu C-S-H faze, već prave cinkove komplekse.¹³⁶

Slika 192. Dijagram topljivosti za Zn(OH)₂-voda sustav¹³⁷

Dodatkom zeolita u sustav uz 20 mas. % mulja u smjesi, izluženi udjel iona cinka je smanjen uz zadržavanje sličnog oblika krivulja. Ovo je ujedno i dokaz da dodatci mulja i zeolita ne utječu na mehanizam hidratacije već samo na kinetičke parametre. Daljnjim povećavanjem mulja raste udjel iona cinka uz promjenu izgleda krivulja. Rezultati određivanja pH i specifične provodnosti prikazani su na slikama **87** – **96**. Dodatkom mulja u cementni sustav pH raste za sve uzorke. U prvom periodu rast je značajan, što odgovara izluživanju hidroksida posebno kalcijeva hidroksida iz solidificiranog uzorka. Isto ponašanje je uočeno kod vrijednosti specifične provodnosti pH i specifične su nešto niže vrijednosti pH i specifične vodljivosti.

5.4.2. Određivanje koncentracije iona olova, pH i specifične vodljivosti u otopinama nakon izluživanja uzoraka s dodatkom olovo(II) oksida

Rezultati određivanja udjela iona olova u otopinama nakon izluživanja prikazani su na slikama 81 i 82. U prvom periodu izluživanja do 18 sati raste udjel izluženih iona olova u otopini s porastom dodatka i iznosio je 0,17 - 2,92 mas. % (uslijed ispiranja iona olova s površine uzorka). U drugom periodu (do 72 sata) dolazi do laganog smanjenja udjela za sve uzorke osim za uzorak s dodatkom od 0,4 mas. % PbO, dok se u trećem periodu neznatno mijenja. Pri visokom pH olovo se nalazi u obliku Pb(OH)₃ iona. Ovi ioni reagiraju u cementnom matriksu i stvaraju olovne polimere s aluminatnim i silikatnim hidratima. Na taj način su manje reaktivni i smanjena je njihova dostupnost za izluživanje.¹³⁸ Asavapisit i suradnici su istraživali reakcije olova s cementom tijekom procesa hidratacije i zaključili su da je u alkalnoj sredini površina cementnih čestica negativno nabijena i kao takva pogodna za adsorpciju metalnih kationa. Budući da su Ca^{2+} ioni najzastupljeniji u otopini, oni se vežu na površinu silikata. Anionske vrste u otopini kao što je $Pb(OH)_3^-$ će se natjecati za adsorpcijska mjesta na Ca^{2+} ionima te će formirati sloj koji će biti vezan u cementnom matriksu.¹³⁹ Dodatkom zeolita u sustav u iznosu od 20 mas. % izlužuje se veći postotak iona olova u svim vremenima izluživanja i za sve dodatke. Krivulje su zadržale karakterističan oblik. Rezultati određivanja pH i specifične provodnosti prikazani su na slikama 97 – 100. U prvom periodu izluživanja vrijednosti pH rastu gdje dolazi do ispiranja alkalija s površine uzorka. Daljnjim izluživanjem dolazi do konstantnog pada pH. Vrijednosti pH se kreću u iznosu oko 11,4

- 12,3. Slično ponašanje je uočeno i kod specifične provodnosti. Vrijednosti se kreću od 3000 μ S/cm nakon 18 sati izluživanja do 1200 μ S/cm nakon 168 sati. Dodatkom zeolita, vrijednosti pH i spec. provodnosti su ostale slične uz zadržavanje istog oblika krivulja.

5.4.3. Određivanje koncentracije iona olova i kroma, pH i specifične vodljivosti u otopinama nakon izluživanja uzoraka s dodatkom olovo(II) kromata

Kumulativni udjeli izluženih iona smjese olova i kroma prikazani su na slikama 83 i 84. Kumulativni udjeli iona olova su iznosili 0,13 – 1,13 mas. % (slika 83 a)). Kao i kod prethodnih dodataka, najveći udjel izluženih iona je nakon prvog perioda izluživanja (18 sati) gdje dolazi do ispiranja olova s površine uzorka. Tijekom daljnjeg izluživanja dolazi do konstantnog opadanja količine iona u otopinama (osim u uzorcima uz dodatak od 0,5 i 1,5 mas. % PbCrO₄). Izluženi udio olova ukazuje na činjenicu da je olovo dobro vezano u cementnoj strukturi, neovisno o prisustvu kroma. Kumulativni udjeli izluženih iona kroma su iznosili 1,28 – 41,6 mas. % (slika 83 b)). Iz rezultata je vidljivo da je izlužen značajan udio kroma što ukazuje na činjenicu da je krom slabo vezan u cementnom matriksu. Mehanizam imobilizacije Cr(VI) u cementnoj pasti nije potpuno objašnjen. Jedan od mehanizama bi mogla biti zamjena sulfata s kromatom, no ovo zahtijeva visoku koncentraciju kromatnih iona u pornoj tekućini. Nadalje, u mnogim slučajevima Cr(VI) je reduciran u Cr(III). Reducirani Cr(III) može se imobilizirati u obliku netopljivog kristaliničnog Cr(OH)₃. Dodatkom zeolita u iznosu od 20 mas. % smanjuje izluženi udjel iona olova (slika 84 a)), dok se udjel iona kroma smanjio samo nakon prvog perioda izluživanja (slika **84 b**)). Tijekom daljnjeg izluživanja dolazi do izluživanja veće količine iona kroma. Rezultati određivanja pH i specifične provodnosti u uzorcima uz različite dodatke olovo(II) kromata i 20 mas. % zeolita prikazani su na slikama 101 – 104. Kao i u prethodnim slučajevima, pH raste samo tijekom prvog perioda izluživanja uslijed ispiranja uzoraka. Daljnjim izluživanjem dolazi do konstantnog smanjenja pH za sve dodatke. Vrijednosti pH se kreću između 11,46 – 12,24. Isto se događa i sa specifičnom provodnosti gdje se vrijednosti kreću u granicama između 976 – 2770 µS/cm. Dodatkom zeolita vrijednosti pH i spec. provodnosti su nešto niže.

5.4.4. Određivanje koncentracije iona kroma, pH i specifične vodljivosti u otopinama nakon izluživanja uzoraka s dodatkom amonijeva bikromata

Kumulativni udjeli izluženih iona kroma prikazani su na slikama **85** i **86**. Iz rezultata je vidljivo da se izluženi udjeli kreću između 1,68 - 28,08 mas. %. Količina imobiliziranog kroma u cementnom matriksu je veća nego kod smjese iona olova i kroma. Krivulje zadržavaju tipični izgled kao i kod prethodnih dodataka. Najveće izluživanje se događa u prvom periodu do 18 sati izluživanja, što je i očekivano. Dodatkom 20 mas. % zeolita značajno se smanjuju izluženi udjeli kroma u otopinama koji se kreću u iznosu od 0,73 – 7,22 mas. %. Rezultati određivanja pH i specifične provodnosti u uzorcima uz različite dodatke ABK prikazani su na slikama **105** – **108**. Vrijednosti pH se kreću od 11,56 – 12,36. Najveći porast pH se događa u prvom periodu izluživanja što je u skladu s dosadašnjim razmatranjima. Nakon toga postupno pada ovisno o dodatku ABK. Slično ponašanje je primjećeno i kod rezultata spec. provodnosti gdje se vrijednosti provodnosti kreću od 731 – 3380 µS/cm. Dodatkom zeolita, kao i u slučaju s kumulativnim udjelima iona kroma, vrijednosti pH i spec.

5.4.5. Difuzijski modeli i mehanizmi izluživanja

Difuzijski model izluživanja koristi Fickovu difuzijsku teoriju za procjenu uspješnosti S/S procesa preko određivanja koeficijenata difuzije D_k i srednjih vrijednosti indeksa izluživanja LI prema jednadžbama **10** i **11**. Vrijednosti koeficijenata difuzije i srednjih vrijednosti indeksa izluživanja prikazane su u tablicama **72** – **76** te na slikama **109** – **113**, **116**, **117**, **119**, **120**, **122**, **123**, **125** i **126**. Prema Nathwaniju i Phillipsu, vrijednosti difuzijskih koeficijenta metala u stabiliziranim uzorcima se kreću između vrijednosti za veoma pokretljive metale ($D_k = 10^{-5} \text{ cm}^2/\text{s}$) do potpuno vezanih metala u smjesi ($D_k = 10^{-15} \text{ cm}^2/\text{s}$).¹⁴⁰ Prema Kanadskoj agenciji za zaštitu životne sredine (Environment Canada) srednje vrijednosti LI mogu se uzeti kao kriterij za korištenje i odlaganje S/S materijala. Za LI vrijednosti iznad 9 postupak se smatra uspješnim, a S/S materijal pogodan za "kontroliranu upotrebu" (sanacija kamenoloma, laguna i izgradnja cesta). Za LI vrijednosti između 8 i 9, S/S materijal se može odlagati

u sanitarnim odlagalištima. S/S materijal s vrijednostima LI < 8 nije pogodan za odlaganje. 106

Vrijednosti koeficijenata difuzije cinka za uzorke uz različite dodatke mulja su se kretale od $1,00 \cdot 10^{-9}$ do $8,34 \cdot 10^{-10}$ cm²/s. S obzirom na prije spomenute granice vidljivo je da je cink u stabiliziranim uzorcima srednje pokretljiv. Srednje vrijednosti LI su bile uglavnom iznad 9, osim za uzorak s 20 mas. % mulja. Dodavanjem zeolita uz konst. udjel mulja u smjesi od 20 mas. %, vrijednosti D_k poprimaju vrijednosti od $1,00 \cdot 10^{-9} - 4,38 \cdot 10^{-12}$ cm²/s. Povećavanjem iznosa mulja u smjesi dolazi do povećanja pokretljivosti cinka. Vrijednosti LI za uzorke s dodatkom zasićenog zeolita (uz 20 mas. % mulja u smjesi) bile su iznad 9 za sve uzorke, pa je S/S postupak bio uspješan. Daljnjim povećavanjem udjela mulja u smjesi dolazi do pada vrijednosti LI ispod 9.

Vrijednosti koeficijenata difuzije olova za uzorke uz različite dodatke PbO kretale su se od $1,15 \cdot 10^{-11} - 9,60 \cdot 10^{-14}$ cm²/s. Iz rezultata je vidljivo da je olovo slabo pokretljivo u stabiliziranom cementnom matriksu. Djelomičnom zamjenom cementa s 20 mas. % zeolita, nema značajnijih promjena u pokretljivosti olova. Vrijednosti LI su se kretale uglavnom iznad 12 što čini ovaj postupak stabilizacije olova vrlo uspješnim. Dodatkom zeolita u sustav u iznosu od 20 mas. % dolazi do blagog pada vrijednosti LI, ali je S/S postupak još uvijek uspješan. Vrijednost LI mogu ukazati i na tip vezanja metala, npr., ako se vrijednosti kreću između 11 < LI < 12,5, olovo je stabilizirano fizičkom interakcijom s hidratacijskim produktima.^{11,141}

Vrijednosti koeficijenata difuzije kroma za uzorke uz različite dodatke amonijeva bikromata kretale su se između $1,50 \cdot 10^{-8}$ - $6,60 \cdot 10^{-11}$ cm²/s. Iz rezultata je vidljivo da je krom srednje pokretljiv u S/S materijalu. Djelomičnom zamjenom cementa s 20 mas. % zeolita, dolazi do smanjenja difuzijskih koeficijenata ($2,00 \cdot 10^{-9} 9,99 \cdot 10^{-11}$ cm²/s). Vrijednosti srednjih LI se nalaze iznad 9 osim uz dodatak 2 i 5 mas. % ABK. Uz dodatak 20 mas. % zeolita srednje vrijednosti LI za sve dodatke su iznad 9 pa je i postupak uspješan, a stabilizirani materijal se može koristiti za kontroliranu upotrebu.

Vrijednosti koeficijenata difuzije olova za uzorke uz različite dodatke PbCrO₄ su se kretale između $1,18 \cdot 10^{-12} - 6,05 \cdot 10^{-15}$ cm²/s. Iz rezultata je vidljivo da je olovo dobro vezano u cementnom matriksu u prisustvu kroma. Srednje vrijednosti LI su iznad 12 što predstavlja ovaj S/S postupak vrlo uspješnim za imobilizaciju olova u smjesi s kromom. Djelomičnom zamjenom cementa sa zeolitom u iznosu od 20 mas. %, dolazi do blagog rasta difuzijskih koeficijenata olova kao i smanjenja srednjih LI vrijednosti.

Difuzijski koeficijenti kroma uz različite dodatke PbCrO₄ su se kretali od $1,34 \cdot 10^{-7} - 6,27 \cdot 10^{-11}$ cm²/s. S obzirom na ove vrijednosti, uočena je veća pokretljivost kroma u smjesi kroma i olova nego kod pojedinačnog dodatka kroma. Srednje vrijednosti LI su se kretale ispod 8 pa se ovaj S/S materijal ne može odlagati (osim za uzorke uz 2,5 i 3 mas. % PbCrO₄). Djelomična zamjena cementa zeolitom dovodi do još lošijih rezultata.

Mehanizmi po kojima dolazi do izluživanja metala iz S/S materijala određuju se preko difuzijskog modela kojeg su razvili de Groot i van der Sloot.¹⁰⁷ Tri kontrolna mehanizma izluživanja (površinsko ispiranje, difuzija i otapanje) određuju se iz nagiba pravca logaritma kumulativnog izluživanja, log (B_t), u odnosu na logaritam vremena (log(t)) prema jednadžbi **12:**¹¹⁹

- površinsko ispiranje < 0,35,
- difuzija 0,35 0,65 i
- otapanje > 0,65.

Vrijednosti nagiba prikazane su na slikama **114, 115, 118, 121, 124** i **127**. Iz rezultata je vidljivo da je u uzorcima uz dodatak mulja osnovni mehanizam izluživanja cinka ispiranje (osim za uzorak C5M gdje je mehanizam otapanje). Dodatkom zeolita uz konst. iznos mulja u smjesi od 20 mas. % pri nižim dodatcima, mehanizam izluživanja je difuzija, dok je pri većim dodatcima osnovni mehanizam izluživanja ispiranje. Povećavanjem dodatka mulja u smjesi dolazi do sva tri mehanizma ovisno o dodatku.

Osnovni mehanizam izluživanja olova je ispiranje (osim za uzorak C0,2PbO gdje je mehanizam izluživanja difuzija i C0,4PbO – otapanje). Djelomičnom zamjenom cementa zeolitom u iznosu od 20 mas. %, osnovni mehanizam je ispiranje (osim za uzorke C0,4PbO20Z i C0,5PbO20Z gdje je mehanizam difuzija).

Mehanizam izluživanja kroma je ispiranje za sve dodatke osim za uzorke C1,5ABK gdje je otapanje osnovni mehanizam te za C4,0ABK gdje je osnovni mehanizam difuzija. Djelomičnom zamjenom cementa zeolitom u iznosu od 20 mas. %, mijenja se i mehanizam izluživanja te se kreće od ispiranja do otapanja ovisno o dodatku.

Osnovni mehanizam izluživanja olova uz dodatak PbCrO₄ se kreće od ispiranja do otapanja ovisno o dodatku. Djelomičnom zamjenom cementa zeolitom osnovni mehanizam izluživanja je ispiranje osim za uzorke C1,5PbCrO₄(20Z) i C2,0PbCrO₄(20Z) gdje je mehanizam izluživanja difuzija. Mehanizam izluživanja kroma uz dodatak PbCrO₄ je ispiranje i difuzija. Djelomičnom zamjenom cementa zeolitom osnovni mehanizam izluživanja kroma je ispiranje, difuzija i otapanje ovisno o udjelu dodatka.

5.5. Toplinska analiza hidratiziranih cementnih pasta

Toplinska analiza hidratiziranih cementnih pasta uz različite dodatke provedena je s TG/DTG sustavom u temperaturnom području od 50 – 850 °C. Na slici **193** prikazane su TG/DTG krivulje hidratiziranog uzorka CEM I.

Slika 193. TG/DTG krivulje hidratiziranog uzorka CEM I

Ova analiza se najčešće koristi kod ispitivanja cemenata za određivanje vlage u uzorku (gubitak mase u temperaturnom području od 50 - 105 °C), sadržaja kemijski vezane vode, sadržaja $Ca(OH)_2$ (u temperaturnom području od 400 – 550 °C) te sadržaja kalcijeva karbonata, $CaCO_3$ (gubitak mase u temperaturnom području od 650 – 800 °C). Još je moguće odrediti i količinu neproreagiranog gipsa u području od 115 – 125 °C, etringita 120 – 130 °C te količinu AFm faze u području od 180 – 200 °C.

Međutim, kod zeolita u temperaturnom području od 60 - 400 °C, ukupni gubitak mase iznosi 80 - 90 mas. %. Ovaj gubitak mase odgovara gubitku kapilarne, međuslojne i zeolitne vode.¹⁴²

Rezultati toplinske analize prikazani u tablici **77**, ukazuju da dodatkom mulja sadržaj kalcijeva hidroksida pada, dok sadržaj kemijski vezane vode raste (slika **128**). Ovo ukazuje na činjenicu da dolazi do reakcije između nastalog kalcijeva hidroksida s cinkom i drugim konstituentima iz mulja. Dodatkom smjese zasićenog zeolita i mulja sadržaj kalcijeva hidroksida još više pada, dok sadržaj kemijski vezane vode više raste nego kod dodatka samog mulja (slike **129 – 132**). Pucolanska reakcija između aktivnih sastojaka zeolita s nastalim kalcijevim hidroksidom vodi smanjenju sadržaja kalcijeva hidroksida uz povećanje sadržaja kemijski vezane vode.^{125,143,144,145}

Dodatkom PbO sadržaj kalcijeva hidroksida i kemijski vezane vode neznatno opada (slika **133**). Zamjenom 20 mas. % cementa zeolitom nastaje puno manja količina portlandita uz istovremeni porast sadržaja kemijski vezane vode. Kao i u prijašnjem slučaju, dodatak zeolita uključuje postojanje pucolanske reakcije (slika **134**).

Dodatkom PbCrO₄ i $(NH_4)_2Cr_2O_7$ sadržaj kalcijeva hidroksida opada uz istovremeni porast sadržaja kemijski vezane vode (slike **135** i **137**). Ovo upućuje na odvijanje reakcija između olova i kroma s kalcijevim hidroksidom. Djelomičnom zamjenom cementa zeolitom u iznosu od 20 mas. %, uslijed pucolanske reakcije nastaje manja količina kalcijeva hidroksida uz istovremeni rast sadržaja kemijski vezane vode (slike **136** i **138**).

5.6. Infracrvena spektroskopija

Na slikama **139** – **149** prikazani su infracrveni spektri uzoraka portland cementa s dodatkom mulja, smjese mulja i zasićenog zeolita, PbO, smjese PbO i zeolita, PbCrO₄, smjese PbCrO₄ i zeolita, $(NH_4)_2Cr_2O_7$ i smjese $(NH_4)_2Cr_2O_7$ i zeolita. Na spektrima su uočene apsorpcijske vrpce koje su karakteristične za sve uzorke. Proučavanje područja identifikacije vode (> 1600 cm⁻¹) daje mnogo informacija o mehanizmima u ranim vremenima hidratacije portland cementa.¹⁴⁶

U području valnih brojeva $3421 - 3445 \text{ cm}^{-1}$ javlja se proširena apsorpcijska vrpca koja odgovara savijanju veze H-O-H (dodatkom PbO, PbCrO₄ i (NH₄)₂Cr₂O₇ apsorpcijska vrpca je još više proširena uz smanjenje intenziteta pika), dok se u području valnih brojeva 1638 – 1652 cm⁻¹ javlja jaka apsorpcijska vrpca istezanja veze H-O u molekuli vode.

Hidroksidna skupina (OH⁻) iz portlandita i metalnih hidroksida vidljiva je na jakoj apsorpcijskoj vrpci u valnom području 3637 - 3644 cm⁻¹.¹⁴⁷ Uz dodatak mulja i smjese mulja i zeolita, PbO, PbCrO₄ i (NH₄)₂Cr₂O₇ uočen je manji intenzitet pika kao i njegovo pomicanje prema većim vrijednostima valnog broja. Ovo ukazuje na negativan

utjecaj cinkovih, olovnih i kromovih iona na hidrataciju portland cementa, kao i postojanje pucolanske reakcije uz dodatak zeolita. Ovi rezultati su u skladu s rezultatima mikrokalorimetrijskih i konduktometrijskih mjerenja.

Na prisutnost karbonatne faze ukazuju jake apsorpcijske vrpce prisutne u valnom području 1418 – 1426 i 1476 – 1490 cm⁻¹. Dodatak PbO i PbCrO₄ znatno utječe na smanjenje intenziteta pikova (slika **144 – 147**). Nastajanje male količine kalcijeva karbonata je vidljivo iz slabih apsorpcijskih vrpci u valnim područjima 721 – 743, 869 – 875, 1476 – 1490, 2865 i 2929 cm⁻¹.

Vrpca pri valnom broju 869 cm⁻¹ predstavlja simetrično i nesimetrično vibriranje Al-O-H veze u oktaedarskoj strukturi etringita u uzorcima portland cementa uz dodatke. Frekvencija vibriranja Al-O-H veze iz etringita za uzorak portland cementa bez dodataka bila je 875 cm⁻¹. Razlika između ovih frekvencija može biti dokaz o vezanju cinka, olova i kroma u strukturu etringita.¹⁴⁸

Sulfatna apsorpcijska vrpca (vibracija S-O veze) pojavljuje se u valnim područjima koja odgovaraju područjima konstitucijske vode: 1100 - 1300, 1620 - 1685 i 3100 - 3600 cm⁻¹.¹⁴⁹

Osnovna karakteristika hidratiziranih cemenata je pomicanje apsorpcijskih vrpci istezanja Si-O veze s valnih brojeva od 452, 522 i 925 cm⁻¹ za nehidratizirani cement, na 469, 543 i 970 cm⁻¹ za hidratizirani.¹⁵⁰ Vrpca pri valnom broju od 970 cm⁻¹ ukazuje na nastajanje C-S-H faze. Apsorpcijska vrpca koja se nalazi u području valnih brojeva od 1110 – 1120 cm⁻¹ odgovara istezanju Si-O veze iz C-S-H faze i predstavlja dokaz polimerizacije SiO₄⁴⁻ lanaca prisutnih u C₃S i C₂S ("finger print" za silikate). Dodatkom mulja, smjese mulja i zeolita, PbO, PbCrO₄ i (NH₄)₂Cr₂O₇, vrpce su pomaknute prema nižim vrijednostima valnih brojeva. Nadalje, apsorpcijska vrpca Si-O-Si veze je osjetljiva na vibracije između Si-O-Si tetraedara i okolnih strukturnih jedinica.

Moulin i suradnici¹⁵⁰ su pokazali da su cinkovi tetraedri uklopljeni u C-S-H matriks i vezani direktno na krajeve silikatnih lanaca preko Zn-O-Si veza, dok su Komarneni i suradnici¹⁵¹ pokazali da se tijekom vezanja u C-S-H strukturu događa zamjena Ca²⁺ iona s kationima teških metala. Vezanjem cinka, olova i kroma u C-S-H strukturi, dolazi do promjena u vezama Si-O-Si tetraedara u C-S-H strukturi. Što se više teških metala veže, dolazi do većih pomaka vrpci.^{152,153} Uz dodatak PbO, PbCrO₄ i (NH₄)₂Cr₂O₇ javlja se vrpca pri valnom broju 2358 cm⁻¹ te predstavlja istezanje i savijanje O-H i H-O-H veza iz slabo vezanih molekula vode koje su adsorbirane na

površini ili zarobljene u velikim šupljinama između hidratacijskih produkata.¹⁵⁴ Povećanjem dodataka vrpca je pomaknuta prema nižim vrijednostima valnog broja.

5.7. Tlačna i savojna čvrstoća cementnih kompozita

Mjerenja tlačne i savojne čvrstoće mortova bez i s dodatkom mulja i smjese mulja i zasićenog zeolita vršena su nakon 1, 2, 7 i 28 dana njegovanja u vodi, a rezultati su prikazani u tablicama **78** i **79** te na slikama **194** i **195**.

Slika 194. Ovisnost tlačne čvrstoće o vremenu hidratacije za cementne mortove uz dodatak mulja i smjese mulja i zas. zeolita

Slika 195. Ovisnost savojne čvrstoće o vremenu hidratacije za cementne mortove uz dodatak mulja i smjese mulja i zas. zeolita

Prema hrvatskoj normi HRN EN 197-1 rana čvrstoća za CEM I bi trebala biti \geq 20 MPa (nakon 2 dana), a normirana čvrstoća (nakon 28 dana njegovanja) bi trebala biti \geq 42,5 MPa. Rezultati mjerenja čvrstoća mortova uz dodatak 2, 5, i 10 mas. % mulja ukazuju na niže vrijednosti tlačnih čvrstoća u odnosu na referentni uzorak bez dodatka. S obzirom na zakonski propisane granice, dodatci do 5 mas. % mulja zadovoljavaju ove uvijete. Dodatkom smjese mulja i zas. zeolita u iznosu od 10, 20 i 30 mas. % zas. zeolita (uz 20 mas. % mulja u smjesi) dolazi do još većeg smanjenja tlačnih čvrstoća u odnosu na referentni uzorak CEM I. Zakonski propisanu granicu zadovoljava samo uzorak uz dodatak 10 mas. % zas. zeolita (uz 20 mas. % mulja u smjesi).

5.7.1. Razvoj matematičkih modela za procjenu tlačnih čvrstoća uzoraka uz različite dodatke mulja i smjese mulja i zasićenog zeolita

Iz slike **194** razvijeni su modeli prema kojima je moguće predvidjeti tlačne čvrstoće u pojedinim periodima hidratacije za različite udjele mulja i smjese mulja i zasićenog zeolita. Dobiveni matematički modeli su prikazani u tablici **86**.

Tablica 86. Prikaz matematičkih modela tlačnih čvrstoća uzoraka uz različite dodatkemulja i smjese mulja i zasićenog zeolita

Uzorak	Model tlačne čvrstoće
CEM I	$c = 11,243\ln(t) + 13,776$
C2M	$c = 10,336\ln(t) + 13,258$
C5M	$c = 10,03\ln(t) + 15,069$
C10M	c = 7,78911n(t) + 15,216
C10ZZ20M	$c = 10,811\ln(t) + 10,521$
C20ZZ20M	$c = 8,0835\ln(t) + 8,2403$
C30ZZ20M	$c = 8,8573\ln(t) + 4,7176$

Primjer proračuna tlačne čvrstoće nakon 10 dana hidratacije za uzorak uz dodatak 2 mas. % mulja:

$$c = 10,336\ln(t) + 13,258 \tag{29}$$

c = 10,336ln(10) + 13,258 c = 37,06 MPa

gdje je:

c – tlačna čvrstoća, MPa,

t – vrijeme hidratacije, dani.

5.8. Ocjena mogućnosti S/S zbrinjavanja (moguća uporabna vrijednost)

U tablici **87** prikazane su prihvatljive granice, srednje vrijednosti indeksa izluživanja i vrijednosti tlačnih čvrstoća cementnih uzoraka uz različite dodatke. Na osnovi tablice moguće je ocijeniti korišteni S/S proces kao prihvatljiv ili neprihvatljiv i odrediti količinu dodatka koja se može dodati u stabilizirani produkt.

	Vrsta ispitivanja		
Uzorak	Izluživanje (srednje	Tlačna čvrstoća, MPa	
	vrijednosti LI)	Nakon 2 dana	Nakon 28 dana
Prihvatljive granice	\geq 9,0	≥ 20,0	≥ 42,5
CEM I+2M	9,1	26,1	46,8
CEM I+5M	9,0	27,6	47,7
CEM I+10M	9,0	19,4	40,1
CEM I+20M	8,8	-	-
CEM I+5ZZ20M	10,8	-	-
CEM I+10ZZ20M	9,6	21,3	45,1
CEM I+20ZZ20M	9,6	16,7	33,1
CEM I+30ZZ20M	9,8	11,3	34,0
CEM I+5ZZ30M	8,9	-	-
CEM I+10ZZ30M	8,9	-	-

Tablica 87. *Prikaz srednjih vrijednosti indeksa izluživanja i vrijednosti tlačnih čvrstoća*(*nakon 2 i 28 dana njegovanja*) *cementnih uzoraka uz različite dodatke*.

Tablica 87 – nastavak

	Vrsta ispitivanja		
Uzorak	Izluživanje (srednje Tlačna čvrstoća, MPa		vrstoća, MPa
	vrijednosti LI)	Nakon 2 dana	Nakon 28 dana
CEM I+20ZZ30M	8,9	-	-
CEM I+30ZZ30M	9,8	-	-
CEM I+5ZZ40M	9,7	-	-
CEM I+10ZZ40M	8,0	-	-
CEM I+20ZZ40M	10,4	-	-
CEM I+30ZZ40M	9,1	-	-
CEM I+5ZZ50M	7,9	-	-
CEM I+10ZZ50M	8,4	-	-
CEM I+20ZZ50M	8,5	-	-
CEM I+30ZZ50M	9,2	-	-
CEM I+0,2PbO	12,1	-	-
CEM I+0,3PbO	12,4	-	-
CEM I+0,4PbO	11,9	-	-
CEM I+0,5PbO	13,3	-	-
CEM I+0,6PbO	12,0	-	-
CEM I+0,7PbO	12,0	-	-
CEM I+0,2PbO20Z	10,9	-	-
CEM I+0,3PbO20Z	11,3	-	-
CEM I+0,4PbO20Z	11,5	-	-
CEM I+0,5PbO20Z	11,2	-	-
CEM I+0,6PbO20Z	11,8	-	-
CEM I+0,7PbO20Z	12,1	-	-
CEM I+0,5PbCrO ₄	7,4	-	-
CEM I+1,0PbCrO ₄	8,2	-	-
CEM I+1,5PbCrO ₄	7,8	-	-
CEM I+2,0PbCrO ₄	7,8	-	-
CEM I+2,5PbCrO ₄	9,1	-	-
CEM I+3,0PbCrO ₄	9,6	-	-
CEM I+0,5PbCrO ₄ (20Z)	7,1	-	-
CEM I+1,0PbCrO ₄ (20Z)	7,8	-	-
CEM I+1,5PbCrO ₄ (20Z)	7,3	-	-
CEM I+2,0PbCrO ₄ (20Z)	7,8	-	-
CEM I+2,5PbCrO ₄ (20Z)	7,8	-	-
CEM I+3,0PbCrO ₄ (20Z)	9,0	-	-

Tablica 87 – nastavak

	Vrsta ispitivanja		
Uzorak	Izluživanje (srednje	Tlačna čvrstoća, MPa	
	vrijednosti LI)	Nakon 2 dana	Nakon 28 dana
CEM I+0,5ABK	9,0	-	_
CEM I+1,0ABK	9,1	-	-
CEM I+1,5ABK	9,3	-	-
CEM I+2,0ABK	7,6	-	-
CEM I+2,5ABK	9,9	-	-
CEM I+3,0ABK	10,2	-	-
CEM I+4,0ABK	9,0	-	-
CEM I+5,0ABK	8,8	-	-
CEM I+0,5ABK20Z	9,4	-	-
CEM I+1,0ABK20Z	10,4	-	-
CEM I+1,5ABK20Z	9,2	-	-
CEM I+2,0ABK20Z	10,6	-	-
CEM I+2,5ABK20Z	9,9	-	-
CEM I+3,0ABK20Z	9,7	-	-
CEM I+4,0ABK20Z	9,2	-	-
CEM I+5,0ABK20Z	9,3	-	-

6. ZAKLJUČCI

Na temelju provedenih mjerenja i dobivenih rezultata može se zaključiti:

- Vrijeme vezanja je praćeno Vicat-ovim aparatom i elektrokemijskom metodom.
 U cementnim sustavima uz dodatak mulja, smjese mulja i zeolita, PbO i PbCrO₄, elektrokemijska metoda nije pogodna za određivanje vremena vezanja.
- Dodatak mulja iz pogona pocinčavanja, PbO i PbCrO₄ u cementnom sustavu pomiče početak i kraj vezanja prema kasnijim vremenima hidratacije, dok dodatak (NH₄)₂Cr₂O₇ pomiče početak i kraj vezanja prema ranijim vremenima. Djelomičnom zamjenom cementa zeolitom, smanjuje se negativan utjecaj dodataka na vrijeme vezanja.
- Određeni su modeli (funkcije) početka i kraja vezanja pomoću kojih je moguće procijeniti vrijeme vezanja za bilo koju količinu i vrstu dodatka.
- Mikrokalorimetrijska i konduktometrijska metoda omogućuje kontinuirano praćenje i određivanje utjecaja različitih dodataka na kinetičke procese hidratacije u periodu rane hidratacije.
- Uvođenjem dodataka u reakcijski sustav cement voda dolazi do promjene termonaponske veličine tijekom hidratacije cementnih pasti. Ukupno oslobođene topline nakon 48 sati hidratacije ukazuju da s povećanjem udjela mulja, PbO i PbCrO₄ i (NH₄)₂Cr₂O₇ registriraju niže vrijednosti toplina dok je pojava maksimuma brzine hidratacije pomaknuta prema kasnijim vremenima hidratacije, osim uz dodatak amonijeva bikromata. Povećanjem udjela dodataka u uzorku, brzina oslobađanja topline i relativni stupanj hidratacije pokazuju niže vrijednosti. Djelomičnom zamjenom cementa zeolitom, smanjuje se negativan utjecaj dodataka na toplinu, brzinu oslobađanja topline i relativni stupanj hidratacije.
- Određene su funkcijske ovisnosti (modeli) ukupno oslobođene topline i vremena pojave maksimuma o udjelima dodataka. Prema ovim modelima moguće je predvidjeti oslobođenu toplinu i vrijeme pojave maksimalne brzine hidratacije za bilo koji dodatak.
- Dodatci ne utječu na mehanizam procesa hidratacije, već utječu na kinetičke parametre i dinamiku odvijanja procesa hidratacije portland cementa.

- Određivanjem specifične provodnosti u cementnim pastama s dodatcima može se odrediti utjecaj dodataka na početak vremena vezanja cementnog kompozita praćenjem pojave maksimuma specifične provodnosti.
- Povećanje udjela dodataka mulja, PbO, i PbCrO₄ u cementnom kompozitu usporava vezanje kompozita, a maksimumi spec. provodnosti javljaju se kasnije pri nižim vrijednostima. Kao i kod prijašnjih metoda, djelomična zamjena cementa zeolitom smanjuje utjecaj dodataka na spec. provodnost. Dodatak (NH₄)₂Cr₂O₇ do iznosa od 2,0 mas. % usporava vezanje uz smanjenje maksimuma spec. provodnosti, dok dodatak od 2,0 5,0 mas. % ubrzava vezanje uz nagli porast vrijednosti spec. provodnosti. Djelomičnom zamjenom cementa zeolitom u iznosu od 20 mas. % smanjuje se utjecaj dodatka na spec. provodnost.
- Određeni su matematički modeli koji opisuju pojavu maksimalne specifične provodnosti s obzirom na količinu i vrstu dodatka.
- Primjenom modificiranog dinamičkog testa izluživanja hidratiziranih uzoraka određeni su kumulativni udjeli iona cinka, olova i kroma nakon pojedinih vremena izluživanja. Iz rezultata se može zaključiti da povećanjem dodatka mulja, PbO, PbCrO₄ i (NH₄)₂Cr₂O₇ u uzorcima raste udjel iona cinka, olova i kroma u otopinama nakon izluživanja. Najveći udjel iona ostvaren je u prvom periodu izluživanja nakon 18 sati zbog ispiranja cinka, olova i kroma s površine uzoraka. Djelomičnom zamjenom cementa zeolitom, udjeli teških metala u otopinama nakon izluživanja su smanjeni uz zadržavanje sličnog oblika krivulja. Slično ponašanje je uočeno i s vrijednostima pH i specifične provodnosti u otopinama nakon izluživanja.
- Procjena uspješnosti S/S procesa vršena je određivanjem koeficijenata difuzije D_k i srednjih vrijednosti indeksa izluživanja LI. Prema Kanadskoj agenciji za zaštitu životne sredine (Environment Canada) za srednje vrijednosti LI iznad 9 postupak se smatra uspješnim, a S/S materijal pogodan za "kontroliranu upotrebu" (sanacija kamenoloma, laguna i izgradnja cesta). Za LI vrijednosti između 8 i 9, S/S materijal se može odlagati u sanitarnim odlagalištima. S/S materijal s vrijednostima LI < 8 nije pogodan za odlaganje.
- Uzorci uz dodatak mulja pokazali su srednju pokretljivost iona cinka uz srednje vrijednosti LI iznad 9 (osim uz dodatak 20 mas. % mulja). Dodatkom zasićenog

zeolita u sustav cement-mulj cink je postao još manje pokretljiv uz još veće vrijednosti LI što ovaj S/S postupak čini uspješnim u stabilizaciji smjese mulja i zeolita.

- Uzorci uz dodatak PbO pokazali su slabu pokretljivost olova u stabiliziranom cementnom matriksu. Srednje vrijednosti LI su se kretale uglavnom iznad 12 što čini ovaj postupak stabilizacije olova vrlo uspješnim. Dodatkom zeolita u sustav u iznosu od 20 mas. % dolazi do blagog pada vrijednosti LI, ali je S/S postupak još uvijek uspješan.
- Uzorci uz dodatak (NH₄)₂Cr₂O₇ pokazali su srednju pokretljivost kroma u S/S materijalu. Djelomičnom zamjenom cementa s 20 mas. % zeolita, dolazi do smanjenja koeficijenata difuzije. Srednje vrijednosti LI se nalaze iznad 9 osim uz dodatak 2 i 5 mas. % (NH₄)₂Cr₂O₇. Uz dodatak 20 mas. % zeolita srednje vrijednosti LI za sve dodatke su iznad 9 pa je i postupak uspješan, a stabilizirani materijal se može koristiti za kontroliranu upotrebu.
- Uzorci uz dodatak PbCrO₄ pokazali su da je olovo dobro vezano u cementnom matriksu u prisustvu kroma. Srednje vrijednosti LI su iznad 12 što predstavlja ovaj S/S postupak vrlo uspješnim za imobilizaciju olova u smjesi s kromom. Djelomičnom zamjenom cementa sa zeolitom u iznosu od 20 mas. %, dolazi do blagog rasta vrijednosti koeficijenata difuzije olova kao i smanjenja srednjih LI vrijednosti. Uočena je veća pokretljivost kroma u smjesi kroma i olova nego kod pojedinačnog dodatka kroma. Srednje vrijednosti LI su se kretale ispod 8 pa se ovaj S/S materijal ne može odlagati (osim za uzorke uz 2,5 i 3 mas. % PbCrO₄). Djelomičnom zamjenom cementa zeolitom dovodi do još lošijih rezultata.
- Mehanizmi po kojima dolazi do izluživanja metala iz S/S materijala određuju se preko difuzijskog modela kojeg su razvili de Groot i van der Sloot. Iz rezultata je vidljivo da je u uzorcima uz dodatak mulja osnovni mehanizam izluživanja cinka ispiranje (osim za uzorak C5M). Dodatkom zeolita uz konst. iznos mulja u smjesi od 20 mas. % pri nižim dodatcima, mehanizam izluživanja je difuzija, dok je pri većim dodatcima osnovni mehanizam izluživanja je ispiranje. Povećavanjem dodatka mulja u smjesi dolazi do sva tri mehanizma ovisno o dodatku.
- Osnovni mehanizam izluživanja olova je ispiranje (osim za uzorak C0,2PbO gdje je mehanizam izluživanja difuzija i C0,4PbO – otapanje). Djelomičnom

zamjenom cementa zeolitom u iznosu od 20 mas. %, osnovni mehanizam je ispiranje (osim za uzorke C0,4PbO20Z i C0,5PbO20Z gdje je mehanizam difuzija).

- Mehanizam izluživanja kroma je ispiranje za sve dodatke osim za uzorke C1,5ABK gdje je otapanje osnovni mehanizam te za C4,0ABK gdje je osnovni mehanizam difuzija. Djelomičnom zamjenom cementa zeolitom u iznosu od 20 mas. %, mijenja se i mehanizam izluživanja te se kreće od ispiranja do otapanja ovisno o dodatku.
- Osnovni mehanizam izluživanja olova uz dodatak PbCrO₄ se kreće od ispiranja do otapanja ovisno o dodatku. Djelomičnom zamjenom cementa zeolitom osnovni mehanizam izluživanja je ispiranje osim za uzorke C1,5PbCrO₄(20Z) i C2,0PbCrO₄(20Z) gdje je mehanizam izluživanja difuzija. Mehanizam izluživanja kroma uz dodatak PbCrO₄ je ispiranje i difuzija. Djelomičnom zamjenom cementa zeolitom osnovni mehanizam izluživanja kroma je ispiranje, difuzija i otapanje ovisno o udjelu dodatka.
- Iz rezultata toplinske analize je vidljivo da dodatkom mulja, PbO, PbCrO₄ i (NH₄)₂Cr₂O₇ dolazi do smanjenja sadržaja Ca(OH)₂ uslijed reakcije cinka, olova i kroma s nastalim hidratacijskim produktima, posebno portlanditom. Sadržaj kemijski vezane vode raste s porastom dodataka što ukazuje na stvaranje novih hidratacijskih produkata. Djelomičnom zamjenom cementa zeolitom uslijed pucolanske reakcije, nastaje manja količina portlandita uz istovremeni rast sadržaja kemijski vezane vode.
- FTIR spektri ukazuju na negativan utjecaj cinka, olova i kroma na hidrataciju portland cementa. Uočeni su manji intenziteti pikova uz istovremeno pomicanje pikova prema manjim i većim vrijednostima valnih brojeva.
- Iz rezultata mjerenja tlačne čvrstoće mortova uz različite dodatke mulja i smjese zasićenog zeolita i mulja može se zaključiti da uzorci uz dodatak mulja i smjese zas. zeolita i mulja pokazuju manju tlačnu čvrstoću od uzorka bez dodataka. S obzirom na zakonski prihvatljive granice za ovu vrstu cementa, prihvatljivi udjeli mulja su do 5 mas. % te smjese zas. zeolita i mulja do 10 mas. %.
- Određeni su matematički modeli prema kojima je moguće predvidjeti tlačnu čvrstoću u bilo kojem vremenu hidratacije za uzorke uz dodatak mulja i smjese mulja i zasićenog zeolita.

• Iz rezultata izluživanja (vrijednost srednjeg indeksa izluživanja metala) i tlačnih čvrstoća moguće je ocijeniti korišteni S/S proces i procijeniti maksimalno dopuštene količine dodataka u cementnom matriksu.

7. LITERATURA

- 1. R. D. Spence, C. Shi, Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes, CRC Press, Boca Raton, 2005.
- M. A. C. Gollmann, M. M. da Silva, A. B. Masuero, J. H. Z. dos Santos, Stabilization and solidification of Pb in cement matrices, Journal of Hazardous Materials 179 (2010) 507-514.
- Q. Y. Chen, M. Tyrer, C. D. Hills, X. M. Yang, P. Carey, Immobilisation of heavy metal in cement-based solidification/stabilisation: A review, Waste Management 29 (2009) 390-403.
- M. Balkan, G. Kocasoy, Industrial sludge solidification by using clinoptilolite, Journal of Environmental Science and Health A39 (2004) 951-960.
- M. Yousuf, A. Mollah, R. K. Vempati, T. C. Lin, D. L. Cocke, The interfacial chemistry of solidification/stabilization of metals in cement and pozzolanic material systems, Waste Management 15 (1995) 137-148.
- V. C. Maio, Overview of Mixed Waste Solidifcation and Stabilization Methods, in: H. Chang, Hazardous and Radioactive Waste Treatment Technologies Handbook, CRC Press, Boca Raton, 2001.
- J. R. Conner, S. L. Hoeffner, A critical review of stabilisation/solidification technology. Critical Reviews in Environmental Science and Technology 28 (1998) 397-462.
- P. Santanu, K. Pak, N. Yuet, Solidification/Stabilization of Organic and Inorganic Contaminants using Portland Cement: A Literature Review, Environmental Reviews 14 (2006) 217-255.
- 9. W. S. Adaska, S. W. Tresouthick, P. B. West, Solidification and stabilization of wastes using portland cement, PCA, Skokie, 1994.
- B. D. Bone, L. H. Barnard, D. I. Boardman, P. J. Carey, C. D. Hills, H. M. Jones, C. L. MacLeod, M. Tryer, Review of scientific literature on the use of stabilisation/solidification for treatment of contaminated soil, solid waste and sludges, Science Report, Environment Agency, Bristol, 2004.
- R. Malviya, R. Chaudhary, Factors affecting hazardous waste solidification/stabilization: a review, Journal of Hazardous Materials 137 (2006) 267-276.

- O. Malliou, M. Katsioti, G. Georgiadis, A. Katsiri, Properties of stabilized/solidified admixtures of cement and sewage sludge, Cement and Concrete Composites 29 (2007) 55-61.
- X. Querol, A. Alastuey, N. Moreno, E. Alvarez-Ayuso, A. Garcia-Sanchez, J. Cama, C. Ayora, M. Simon, Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash, Chemosphere 62 (2) (2006) 171-180.
- P. C. Hewlett, Lea's Chemistry of Cement and Concrete, 4th edition., Elsevier Science and Technology Books, London, 2004.
- http://www.sbmchina.com/cement_plant/products/cement_calcining.html, 23. kolovoz 2012.
- D. Barbir, P. Dabić, P. Krolo, Određivanje kinetičkih parametara cementnog sustava kao pokazatelja mogućnosti zbrinjavanja otpadnog mulja iz pogona pocinčavanja, u Proceedings of International Conference MATRIB 2009, Croatian Society for Materials and Tribology, Zagreb (2009) 1-9.
- H. F. W. Taylor, Cement Chemistry, 2nd edition, Thomas Telford Press, London, 1997.
- 18. Đureković, Cement, cementni kompozit i dodaci za beton, IGH i Školska knjiga, Zagreb, 1996.
- 19. http://www.whd.co.uk/Clinker/clinker%20intro.html, 28. travnja 2013.
- N. Gineys, G. Aouad, F. Sorrentino, D. Damidot, Incorporation of trace elements in Portland cement clinker: Thresholds limits for Cu, Ni, Sn or Zn, Cement and Concrete Research 41 (2011) 1177-1184.
- 21. S. Diamond, C/S mole ratio of C-S-H gel in a nature C_3S paste as determined by EDXA, Cement and Concrete Research **6** (1976) 413-416.
- D. L. Rayment, A. J. Majumdar, The composition of the C-S-H phases in Portland cement pastes, Cement and Concrete Research 12 (1982) 753-764.
- F. P. Glasser, Fundamental Aspects of Cement Solidification and Stabilisation, Journal of Hazardous Materials 52 (1997) 151-170.
- 24. http://www.gzn.uni-erlangen.de/en/applied-geosciences/appliedmineralogy/cement-mineralogy/pvaopc-interaction/, 08. ožujka 2012.
- S. T. Erdogan, Effect of clinker phase distribution within cement particles on properties of a hydrating cement paste, Construction and Building Materials 38 (2013) 941-949.

- 26. N. Ukrainczyk, Razvoj modela procesa hidratacije cementa, doktorska disertacija, FKIT, Zagreb, 2009.
- B. S. Cannell, T. T. Eghmy, J. E. Krzow, Heavy metal stabilisation in municipal solid waste combustion bottom ash using soluble phosphate, Waste Management 20 (2000) 135-148.
- 28. C. S. Poon, D. J. Peters, R. Perry, Mechanisms of metal stabilisation in cement based fixation processes, Science of the Total Environment **41** (1985) 55-63.
- 29. C. S. Poon, A. I. Clark, R. Perry, Permeability study of the cement based solidification process for the disposal of hazardous wastes, Cement and Concrete Research **16** (1986) 161-172.
- C. D. Hills, C. J. Sollars, R. Perry, A calorimetric and microstructural study of solidified toxic wastes-part 2: a model for poisoning of OPC hydration, Waste Management 14 (1994) 601-612.
- C. D. Hills, S. J. T. Pollard, The influence of interference effects on the mechanical, microstructural and fixation characteristics of cement solidified waste forms, Journal of Hazardous Materials 52 (1997) 171-191.
- 32. S. S. Trussel, R. D. Spence, A review of stabilisation/solidification interferences, Waste Management **14** (1994) 507-519.
- K. Y. Cheng, P. L. Bishop, Sorption, important in stabilised/solidified waste forms, Hazardous Waste and Hazardous Materials 9 (1992) 289-296.
- F. D. Tamas, L. Csetenyi, E. Tritthart, Effect of adsorbent on the leachability of cement bonded electroplating wastes, Cement and Concrete Research 22 (1992) 399-404.
- M. Kitamura, H. Konno, A. Yasui, H. Masuoka, Controlling factors and mechanism of reactive crystallisation of calcium carbonate polymorphs from calcium hydroxide suspensions, Journal of Crystal Growth 236 (2002), 323-332.
- S. Asavapisit, G. Fowler, C. R. Cheeseman, Solution chemistry during cement hydration in the presence of metal hydroxide wastes, Cement and Concrete Research 27 (1997) 1249-1260.
- C. S. Poon, A. I. Clark, C. J. Peters, R. Perry, Mechanisms of metal fixation and leaching by cement based fixation processes, Waste Management and Research 3 (1985) 127-142.

- C. D. Hills, L. Koe, C. J. Sollars, R. Perry, Early Heat of Hydration During the Solidification of a Metal Plating Sludge, Cement and Concrete Research 22 (1992) 822-832.
- C. D. Hills, C. J. Sollars, R. Perry, Ordinary Portland Cement Based Solidification: The Role of OPC Reviewed, Cement and Concrete Research 23 (1993) 196-212.
- C. D. Hills, The Hydration of Portland Cement During Cement-Based Solidification of Toxic Wastes, PhD Thesis, Imperial College, University of London, 1993.
- C. Tashiro, H. Takahasi, M. Kanaya, I. Hirakida, R. Yoshida, Hardening Property of Cement Mortar Adding Heavy Metal from Hardened Mortar, Cement and Concrete Research 7 (1977) 283-290.
- 42. R. A. Hanna, P. J. Barrie, C. R. Cheeseman, C. D. Hills, P. M. Buchler, R. Perry, Solid State ²⁹Si and ²⁷Al NMR and FTIR Study of Cement Pastes Containing Industrial Wastes and Organics, Cement and Concrete Research 25 (1995) 435-444.
- R. A. Hanna, C. R. Cheeseman, C. D. Hills, C. J. Sollars, P. M. Buchler, R. Perry, Calcium Hydroxide Formation in Cement-Solidified Industrial Wastes, Environmental Technology 15 (1995) 1001-1008.
- J. R. Conner, Chemical Fixation and Solidification of Hazardous Waste, Van Rostrand Reinhold, New York, 1990.
- 45. C. K. Lin, J. N. Chen, C. C. Lin, An NMR and XRD study of solidification/stabilization of chromium with Portland cement and β-C₂S, Journal of Hazardous Materials 48 (1996) 137-147.
- M. A. Trezza, M. F. Ferraiuelo, Hydration study of limestone blended cement in the presence of hazardous wastes containing Cr(VI), Cement and Concrete Research 33 (2003) 1039-1045.
- G. Kakali, S. Tsivilis, A. Tsialtas, Hydration of ordinary Portland cements made from raw mix containing transition element oxides, Cement and Concrete Research 28 (1998) 335-340.
- S. Wang, C. Vipulanandan, Solidification/stabilization of Cr(VI) with cement: leachability and XRD analysis, Cement and Concrete Research 30 (2000) 385-389.

- 49. J. H. Chen, Y. Y. Wang, C. C. Wan, D. C. Liou, MAS/NMR studies of the hydration process of β -C₂S in the presence of chromium, Cement and Concrete Research **24** (1994) 319-324.
- 50. M. A. Trezza, A. N. Scian, Waste with chrome in the Portland cement clinker production, Journal of Hazardous Materials **147** (2007) 188-196.
- 51. O. E. Omotoso, D. G. Ivey, R. Mikula, Electron microscopic and ²⁹Si-nuclear magnetic resonance spectroscopic studies of chromium doped tricalcium silicate, u: J.P. Hager, B. Mishra, C.F. Davidson, J.L. Litz (ured.), Treatment and Minimisation of Heavy Metal-Containing Wastes (1995) 129-140.
- E. Zamorani, I. A. Sheikh, M. della Rosa, G. Serrini, Physical properties and leachability of MLW stream containing Cr, Ni and Cd immobilised in a cement matrix, Materials Research Society Symposium Proceedings 127 (1989) 489-494.
- J. Pera, G. Thevenin, M. Chabannet, Design of a novel system allowing the selection of an adequate binder for solidification/stabilization of wastes, Cement and Concrete Research 27 (1997) 1533-1542.
- J. Deja, Immobilization of Cr⁶⁺, Cd²⁺, Zn²⁺ and Pb²⁺ in alkali-activated slag binders, Cement and Concrete Research **32** (2002) 1971-1979.
- 55. A. Al-Tabbaa, J. A. Stegmann, Stabilization/solidification treatment and remediation, Taylor and Francis Group, London, 2005.
- 56. X. Y. Wang, H. S. Lee, Modeling the hydration of concrete incorporating fly ash or slag, Cement and Concrete Research **40** (2010) 984-996.
- 57. C. D. Woolard, K. Petrus, M. van der Horst, The use of modified fly ash an adsorbent for lead, Water SA **26** (2000) 531-536.
- Q. Chen, L. Zhang, Y. Ke, C. Hills, Y. Kang, Influence of carbonation on the acid neutralization capacity of cements and cement-solidified/stabilized electroplating sludge, Chemosphere 74 (2009) 758-764.
- 59. C. Shi, P. V. Krivenko, D. Roy, Alkali-Activated Cements and Concrete, Taylor and Francis, London, 2006.
- M. Ilić, S. Miletić, D. Milić, I. Brčeski, Solidification of lead ions in portland cement matrix, u: G. R. Woolley, J. J. J. M. Goumans, P. J. Wainwright (ured.), Waste Materials in Construction, Elsevier Science Ltd., Amsterdam (2000) 87-98.

- M. Palermo, N. Francingues, D. Averett, Environmental Dredging and Disposal – Overview and Case Studies, in: Proceedings of National Conference on Management and Treatment of Contaminated Sediments, U. S. Environmental Protection Agency, Washington DC, EPA 625/R-98/001, 1998.
- 62. P. A. Ciullo, Industrial minerals and their use; A handbook and formulary, Noyes Publications, New Yersey, 1996.
- S. Y. Hunce, D. Akgul, G. Demir, B. Mertoglu, Solidification/stabilization of landfill leachate concentrate using different aggregate materials, Waste Management 32 (7) (2012) 1394-1400.
- 64. P. Krolo, R. Krstulović, P. Dabić, A. Bubić, Hydration and leaching of the cement-zeolite composite, Ceramics-Silikaty **49** (2005) 213-219.
- C. Gervais, S. K. Ouki, Performance study of cementitous systems containing zeolite and silica fume: effects of four metal nitrates on the setting time, strength and leaching characteristics, Journal of Hazardous Materials B93 (2002) 187-200.
- 66. Y. S. Ok, J. E. Yang, Y. S. Zhang, S. J. Kim, D. Y. Chung, Heavy metal adsorption by a formulated zeolite-portland cement mixture, Journal of Hazardous Materials **147** (2007) 91-96.
- 67. Farkaš, M. Rožić, K. Košutić, A. Pisarović, Obrada procjednih voda s odlagališta otpada Jakuševac, Zagreb, aktivnim ugljenom i prirodnim zeolitom klinoptilolitom s područja Krapine, Kemija u industriji 54 (2005) 461-468.
- C. Cabrera, C. Gabaldon, P. Marzal, Technical note: Sorption characteristics of heavy metal ions by a natural zeolite, Journal of Chemical Technology and Biotechnology 80 (2005) 477-481.
- 69. N. Feng, Properties of Zeolite Mineral Admixture Concrete, in: Sarkar, Harsh and Ghosh (eds.) Progress in Cement and Concrete, Mineral Admixture in Cement and Concrete, ABI Books, New Delhi, 1993.
- 70. J. Guo, C. Liang, A study on reaction mechanisms of zeolite during the hydration of cement, Journal of Chinese Ceramic Society **8** (1980) 242-257.
- http://devmconnors.com/leach/leaching-basics/leaching-from-monolithicproducts/, 20. ožujka 2012.
- 72. H. A. van der Sloot, J. J. Dijkstra, Development of Horizontally Standardized Leaching Tests for Construction Materials: A Material Based or Release Based Approach, Energy research Centre of the Netherlands, 2004.

- 73. http://www.leaching.net, 23.ožujka 2012.
- 74. M. Prica, Efekti primene različitih postupaka remedijacije na imobilizaciju teških metala u sedimentu, doktorska disertacija, PMF, Novi Sad, 2008.
- H. A. van der Sloot, L. Heasman, P. Quevauviller, Harmonization of Leaching/Extraction tests, Elsavier, Amsterdam, 1997.
- J. D. Ortego, Y. Barroeta, Leaching effects on silicate polymerisation, Environmental Science and Technology 25 (1991) 1171-1174.
- D. Bonen, S. L. Sarkar, The effects of simulated environmental attack on immobilisation of heavy metals doped in cement-based materials, Journal of Hazardous Materials 40 (1995) 321-335.
- B. Johannesson, P. Utgenannt, Microstructural changes caused by carbonation of cement mortar, Cement and Concrete Research **31** (2001) 925-931.
- R. W. Smith, N. Gutierrez, A. Tarquin, Role of carbonation in the transient leaching of cementitious waste forms, Environmental Science and Technology 31 (1997) 2345-2349.
- W. P. S. Dias, Reduction of concrete sorptivity with age through carbonation, Cement and Concrete Research **30** (2000) 1255-1261.
- 81. I. Twardowska, H. E. Allen, A. F. Kettrup, W. J. Lacy, Solid Waste: Assessment, Monitoring and Remediation, Elsevier, Amsterdam, 2004.
- C. B. A. Aranda, Leaching tests comparison for solidified and stabilised contaminated sediments, Master thesis, Faculty of Mathematics and natural Sciences, University of Oslo, Oslo, 2008.
- M. Dalmacija, Procena potencijala remedijacije sedimenta kontaminiranog metalima primenom imobilizacionih agenasa, doktorska disertacija, Univerzitet u Novom Sadu, Novi Sad, 2010.
- USEPA, Method 1311: Toxicity Characteristic Leaching Procedure, US Environmental Protection Agency, Washington, D. C., 2004.
- USEPA, Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods, SW – 846. Office of Solid Waste and Emergency Response, Washington, D. C., 1996.
- 86. DIN-NORMEN. DIN 38414-S4, Determination of leachability by water (S4). German standard methods for examination of water, wastewater and sludge. Sudge and sediments (group S), 1984.

- 87. CEN/TC 292 WG6, Characterisation of waste: leaching behavior tests compliance leaching tests for granular waste, Parts 1-4, EN 12457, 1999.
- http://vanderbilt.edu/leaching/leaching-tests/test-method-1313/, 30. ožujka 2012.
- S. Asavapisit, S. Naksrichum, N. Harnwajanawong, Strenth, leachability and microstructure characteristics of cement-based solidified plating sludge, Cement and Concrete Research 35 (6) (2005) 1042-1049.
- J. A. Stegemann, P. L. Cote, Summary of on investigation of test methods for solidified waste evaluation, Waste Management 10 (1990) 41-52.
- C. S. Poon, L. Lam, S. C. Kou, Z. S. Lin, A study on the hydration rate of natural zeolite blended cement pastes, Construction and Building Materials 13 (8) (1999) 427-432.
- A. Tessier, P. G. C. Campbell, M. Bisson, Sequential Extraction Procedure for the Speciation of Particulate Trace Metals, Analytical Chemistry 51 (1979) 1-8.
- B. Kim, M. B. McBride, A test of sequential extractions for determining metal speciation in sewage sludge-amended soils, Environmental Pollution 144 (2006) 475-482.
- C. S. Poon, Z. Q. Chen, Comparison of the characteristics of flow-through and flow- around leaching tests of solidified heavy metal wastes, Chemoshere 38 (1999) 663-680.
- 95. V. Parapar, J. F. Ruiz de Elvira, C. Francoy, M. Rodríguez-Piñero, L. Salvador Martinez, C. Fernández Pereira, Stabilization/solidification of hazardous metallic wastes: prediction of leach test performance to optimize S/S mixtures, Waste Management Research 16 (1998) 175-182.
- http://vanderbilt.edu/leaching/leaching-tests/test-method-1315/, 02. travnja 2012.
- 97. ANS (American National Standard), ANSI/ANS-16.1, American National Standard for the Measurement of the Leachability of Solidified Low-Level Radioactive Wastes by a Short-Term Tests Procedure, American National Standards Institute, New York, 1986.
- 98. http://www.tzw.de/en/index.php?content_id=64, 03. travnja 2012.
- 99. S. Kundu, A. K. Gupta, Immobilization and leaching characteristics of arsenic from cement and/or lime solidified/stabilized spent adsorbent containing arsenic, Journal of Hazardous Materials 153 (2008) 434-443.

- 100. D. H. Moon, D. Dermatas, N. Menounou, Arsenic immobilization by calciumarsenic precipitates in lime treated soils, Science of the Total Environment **330** (2004) 171-185.
- 101. D. H. Moon, D. Dermatas, An evaluation of lead leachability from stabilized/solidified soils under modified semi-dynamic leaching conditions, Engineering Geology 85 (2006) 67-74.
- 102. D. H. Moon, D. Dermatas, Arsenic and lead release from fly ash stabilized/solidified soils under modified semi-dynamic leaching conditions, Journal of Hazardous Materials 141 (2007) 388-394.
- 103. D. Dermatas, X. Meng, Utilisation of fly ash for stabilization/solidification of heavy metal contaminated soils, Engineering Geology **70** (2003) 377-394.
- 104. D. Dermatas, D. H. Moon, N. Menounou, X. Meng, R. Hires, An evaluation of arsenic release from monolithic solids using a modified semi-dynamic leaching test, Journal of Hazardous Materials B116 (2004) 25-38.
- 105. H. Godbee, D. Joy, Assessment of the Loss of Radioactive Isotopes from Waste Solids to the Environment: Part I. Background and Theory. ORNL – TM – 4333, Oak Ridge, Tennessee, 1974.
- 106. Environment Canada, Proposed evaluation protocol for cement-based solidified wastes, environmental protection series. Report No. EPS 3/HA/9, 1991.
- 107. G. J. Groot, H. A. Sloot, Stabilization and Solidification of Hazardous, Radioactive, and Mixed Wastes, Philadelphia, USA (1992) 149-170.
- 108. R. Krstulović, P. Dabić, A conceptual model of the cement hydration process, Cement and Concrete Research 30 (5) (2000) 693-698.
- 109. L. Wadsö, An experimental comparison between isothermal calorimetry, semiadiabatic calorimetry and solution calorimetry for the study of cement hydration, Nordtest Techn. Report 522, 2003.
- 110. R. Krstulović, P. Krolo, T. Ferić, Microcalorimetry in the cement hydration process, Periodica Polytehnica, **33** (1989) 315-321.
- 111. I. Piljac, Elektroanalitičke metode, RMC, Zagreb, 1995.
- 112. A. Terzić, T. Volkov-Husović, R. Jančić-Heineman, Lj. Pavlović, Application of instrumental methods in the investigation of properties and microstructure of construction concretes, Metalurgija-Journal of Metallurgy 14 (2008) 253-270.
- 113. V. Valković, Spektroskopija karakterističnih X-zraka, Školska knjiga, Zagreb, 1980.

- 114. Tehničko upustvo za rad s Twin-X uređajima, Oxford instruments Analytical Ltd. 2003.
- 115. http://en.wikipedia.org/wiki/Fourier_transform_infrared_spectroscopy15. rujna 2010.
- 116. R. Ylmen, U. Jaglid, B. M. Steeneri, I. Panas, Early hydration and setting of Portland cement monitored by IR, SEM and Vicat techniques, Cement and Concrete Research **39** (5) (2009) 433-439.
- 117. http://www.unimarburg.de/fb13/research/of/surface_spectroscopy/iras?language_sync=1, 29. travnja 2013.
- 118. Tehnička uputa CEM I 42,5 R Sv. Juraj, 7. rujna 2011.
- 119. EA NEN 7345: 2004. Leaching Characteristics of Moulded or Monolithic Bulding and Wastes Materials.
- 120. P. Krolo, Studij kinetike hidratacije cementa u prisustvu aditiva, doktorska disertacija, Tehnološki fakultet u Splitu, Split, 1990.
- 121. Tehničko upustvo za korištenje konduktometra ISKRA MA 5964.
- 122. Tehničko upustvo za rad s Twin-X uređajima, Oxford instruments Analytical Ltd.
- 123. http://www.perkinelmer.com/CMSResources/Images/44-74459bro_pyris-1-tga.pdf, 19. srpnja 2012.
- 124. Q.Y. Chen, C.D. Hills, M. Tyrer, Characterisation of products of tricalcium silicate hydration in the presence of heavy metals, Journal of Hazardous Materials 147 (2007), 817-825.
- 125. T. Perraki, G. Kakali, F. Kontoleon, The effect of natural zeolites on the early hydration of Portland cement, Microporous and Mesoporous Materials 61 (2003), 205-212.
- 126. S. Y. N. Chan, X. Ji, Comparative study of the initial surface absorption and chloride diffusion of high performance zeolite, silica fume and PFA concretes, Cement and Concrete Composites 21 (1999) 293-300.
- 127. G. Thevenin, J. Pera, Interactions between lead and different binders, Cement and Concrete Research 29 (1999) 1605-1610.
- 128. M. L. D. Gougar, B. E. Scheetz, D. M. Roy, Ettringite and C-S-H Portland cement phases for waste ion immobilization: a review, Waste Management 16 (4) (1996) 295-303.
- 129. D. Stephan, H. Maleki, D. Knofel, B. Eber, R. Hardtl, Influence of Cr, Ni and Zn on the properties of pure clinker phases: Part II, C₃A and C₄AF, Cement and Concrete Research **29** (5) (1999) 651-657.
- 130. D. Barbir, P. Dabić, P. Krolo, Hydration study of ordinary Portland cement in the presence of lead(II) oxide, Chemical and Biochemical Engineering Quarterly 27 (1) (2013) 95-99.
- 131. M. Heikal, H. El-Didamony, M. S. Morsy, Limestone-filled pozzolanic cement, Cement and Concrete Research **30** (2000) 1827-1834.
- 132. F. D. Tamas, Electrical conductivity of cement pastes, Cement and Concrete Research 12 (1982) 115-120.
- 133. D. Barbir, P. Dabić, P. Krolo, Stabilization of chromium salt in ordinary portland cement, Sadhana Academy Proceedings in Engineering Science 37 (6) (2012) 731-737.
- 134. D. Barbir, P. Dabić, P. Krolo, Evaluation of leaching behavior and immobilization of zinc in cement-based solidified products, Hemijska industrija 66 (5) (2012) 781-786.
- 135. M. J. N. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions (2nd Edn.), National Association of Corrosion Engineers, Houston, 1974.
- 136. H. Ecke, N. Menad, A. Lagerkvist, Treatment-oriented characterization of dry srubber residue from municipal solid waste incineration, Journal of Material Cycles and Waste Management 4 (2002) 117-126.
- 137. http://www.ecs.umass.edu/cee/reckhow/courses/680/exams/08f.html, 17. lipnja 2011.
- 138. E. Herrera, M. Tittlebaum, F. Cartledge, H. Eaton, Evaulation of the Leaching Properties of Solidified Heavy Metal Wastes, Journal of Environmental Science and Health A27 (4) (1992) 983-998.
- 139. X. D. Li, C. S. Poon, H. Sun, I. M. C. Lo, D. W. Kirk, Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials, Journal of Hazardous Materials 82 (3) (2001) 215-230.
- 140. J. S. Nathwani, C. R. Phillips, Leachability of Ra-226 from uranium mill tailings consolidated with naturally occurring materials and/or cement: II. Analysis based on mass transport equation, Water, Air and Soil Pollution 14 (1980) 389-402.

- 141. M. Lasheras-Zubiate, I. Navarro-Blasco, J. M. Fernandez, J. I. Alvarez, Encapsulation, solid-phases identification and leaching of toxic metals in cement systems modified by natural biodegradable polymers, Journal of Hazardous Materials 233-234 (2012) 7-17.
- 142. V. S. Ramachandran, R. M. Paroli, J. J. Beaudoin, A. H. Delgado, Handbook of Thermal Analysis of Construction Materials, Noyes Publications, Norwich, 2002.
- 143. Z. Giergiczny, A. Krol, Immobilization of heavy metals (Pb, Cu, Cr, Zn, Cd, Mn) in the mineral additions containing concrete composites, Journal of Hazardous Materials 160 (2008) 247-255.
- 144. R. Snellings, G. Mertens, O. Cizer, J. Elsen, Early age hydration and pozzolanic reaction in natural zeolite blended cements: Reaction kinetics and products by in situ synchrotron X-ray powder diffraction, Cement and Concrete Research **40** (2010) 1704-1713.
- 145. T. Perraki, E. Kontori, S. Tsivilis, G. Kakali, The effect of zeolite on the properties and hydration of blended cements, Cement and Concrete Composites 32 (2010) 128-133.
- 146. M. Y. A. Mollah, W. Yu, R. Schennach, D. L. Cocke, A Fourier transform infrared spectroscopic investigation of the early hydration of Portland cement and the influence of sodium lignosulfonate, Cement and Concrete Research 30 (2000) 267-273.
- 147. M. A. Trezza, Hydration Study of Ordinary Portland Cement in the Presence of Zinc Ions, Materials Research 10 (4) (2007) 331-334.
- 148. G. R. Qian, J. Shi, Y. L. Cao, Y. F. Xu, P. C. Chui, Properties of MSW fly-ash calcium sulfoaluminate cement matrix and stabilization/solidification on heavy metals, Journal of Hazardous Materials 152 (2008) 196-203.
- 149. M. J. Varas, M. A. de Buergo, R. Fort, Natural cement as the precursor of Portland cement: Methodology for its identification, Cement and Concrete Research 35 (2005) 2055-2065.
- 150. I. Moulin, W. E. E. Stone, J. Sanz, J. Y. Bottero, F. Mosnier, C. Haehnel, Lead and zinc retention during hydration of tri-calcium silicate: a study by sorption and 29Si nuclear magnetic resource spectroscopy, Langmuir 15 (1999) 2829-2835.

- 151. S. Komarneni, E. Breval, D. M. Roy, R. R. Roy, Reactions of some calcium silicates with metal cations, Cement and Concrete Research **18** (1988) 204-220.
- 152. G. Qian, D. D. Sun, J. H. Tay, Characterization of mercury- and zinc-doped alkali-activated slag matrix, Part II. Zinc, Cement and Concrete Research 33 (2003) 1257-1262.
- 153. A. C. Sophia, K. Swaminathan, Assessment of the mechanical stability and chemical leachability of immobilized electroplating waste, Chemosphere 58 (2005) 75-82.
- 154. M. M. A. B. Abdullah, K. Hussin, M. Bnhussain, K. N. Ismail, Z. Yahya, R. A. Razak, Fly Ash-based Geopolymer Lightweight Concrete Using Foaming Agent, International Journal of Molecular Science, 13 (2012) 7186-7198.

ŽIVOTOPIS

Damir Barbir, dipl. inž. kem. tehn., rođen je u Metkoviću 13.01.1983. Osnovnu školu završio je u Staševici 1997. godine. Opću gimnaziju je polazio u Vrgorcu gdje je maturirao 2001. godine. Kemijsko-tehnološki fakultet, smjer Kemijsko-tehnološki procesi upisao je 2001., a diplomirao 2007. godine. Od 01. veljače 2008. god. radi kao asistent na Kemijsko-tehnološkom fakultetu u Splitu, u Zavodu za anorgansku tehnologiju na istraživačkom projektu " Cementni kompoziti i stabilizacija štetnih otpada" (011-1252970-2254). U akademskoj godini 2008./2009. upisao je Poslijediplomski doktorski studij: Kemijsko-inženjerstvo u razvoju materijala i zaštiti okoliša, smjer Razvoj materijala. U nastavnoj djelatnosti je sudjelovao u izvođenju vježbi iz kolegija "Tehnološki procesi u heterogenim sustavima" te je pomagao pri izradi diplomskih i završnih radova.

Objavio je 12 znanstvenih radova (2 u časopisima indeksiranim u Current Contents-u, 1 objavljen u drugim časopisima, 7 u zbornicima s međunarodnom recenzijom te 2 rada u zbornicima s domaćom recenzijom).