Analiza hibridnog procesa elektrokoagulcije i obrade na sintetskom zeolitu različite veličine čestica u obradi procjedne vode nakon kompostiranja anaerobnim procesom

Magaš, Klara

Master's thesis / Diplomski rad

2022

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Split, Faculty of Chemistry and Technology / Sveučilište u Splitu, Kemijsko-tehnološki fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:167:895661

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-02-20

Repository / Repozitorij:

Repository of the Faculty of chemistry and technology - University of Split

SVEUČILIŠTE U SPLITU

KEMIJSKO-TEHNOLOŠKI FAKULTET

ANALIZA HIBRIDNOG PROCESA ELEKTROKOAGULACIJE I OBRADE NA SINTETSKOM ZEOLITU RAZLIČITE VELIČINE ČESTICA U OBRADI PROCJEDNE VODE NAKON KOMPOSTIRANJA ANAEROBNIM PROCESOM

DIPLOMSKI RAD

KLARA MAGAŠ

Matični broj: 336

Split, listopad 2022.

SVEUČILIŠTE U SPLITU

KEMIJSKO-TEHNOLOŠKI FAKULTET

DIPLOMSKI STUDIJ KEMIJSKA TEHNOLOGIJA

SMJER ZAŠTITA OKOLIŠA

ANALIZA HIBRIDNOG PROCESA ELEKTROKOAGULACIJE I OBRADE NA SINTETSKOM ZEOLITU RAZLIČITE VELIČINE ČESTICA U OBRADI PROCJEDNE VODE NAKON KOMPOSTIRANJA ANAEROBNIM PROCESOM

DIPLOMSKI RAD

KLARA MAGAŠ

Matični broj: 336

Split, listopad 2022.

UNIVERSITY OF SPLIT

FACULTY OF CHEMISTRY AND TECHNOLOGY

GRADUATE STUDY OF CHEMICAL TECNOLOGY ENVIRONMENTAL PROTECTION

ANALYSIS OF THE HYBRID PROCESS OF ELECTROCOAGULATION AND TREATMENT WITH SYNTHETIC ZEOLITE OF DIFFERENT PARTICLE SIZES IN TREATMENT OF COMPOST LEACHATE OBTAINED BY COMPOSTING USING ANAEROBIC PROCESS

DIPLOMA THESIS

KLARA MAGAŠ

Parent number: 336

Split, October 2022.

TEMELJNA DOKUMENTACIJSKA KARTICA

DIPLOMSKI RAD

Sveučilište u Splitu

Kemijsko-tehnološki fakultet u Splitu

Sveučilišni diplomski studij kemijske tehnologije: Zaštita okoliša

Znanstveno područje: Tehničke znanosti

Znanstveno polje: Kemijsko inženjerstvo

Tema rada je prihvaćena na 25. sjednici Fakultetskog vijeća Kemijsko-tehnološkog fakulteta u Splitu održanoj 18. ožujka 2022. godine

Mentor: prof. dr. sc. Nediljka Vukojević Medvidović

ANALIZA HIBRIDNOG PROCESA ELEKTROKOAGULACIJE I SINTETSKOG ZEOLITA RAZLIČITE VELIČINE ČESTICA U OBRADI PROCJEDNE VODE NAKON KOMPOSTIRANJA ANAEROBNIM PROCESOM

Klara Magaš, 336

Sažetak: Korištenjem vode nastaju otpadne vode koje je potrebno na određeni način zbrinuti ili podvrgnuti različitim postupcima pročišćavanja prije ispusta u vodna tijela. U procesu kompostiranja nastaju procjedne vode koje su onečišćene organskim i anorganskim štetnim tvarima i kao takve zahtijevaju obradu/tretman prije njihovog ispuštanja. Uslijed industrijalizacije i porasta standarada, nastaju sve veće količine otpadnih voda složenog sastava, za koje treba primijeniti i složenije postupke obrade. Danas je naglasak na razvoju hibridnih procesa koji kombiniraju ili integriraju dva ili više različitih fizikalnih, kemijskih i bioloških postupaka. U ovom radu analizirat će se hibridni proces elektrokoagulacije i sintetskog zeolita različite veličine čestica. Tijekom procesa određeni su sljedeći pokazatelji: pH vrijednost, električna vodljivost, kemijska potrošnja kisika (KPK), mutnoća, ukupni isparni ostatak. Također je provedena i analiza operativnih troškova korištenjem Faradayeva zakona i podataka o utrošku masa elektroda. Rezultati pokazuju da odabir materijala elektrode, veličina čestica korištenog zeolita i gustoće struje utječu na efikasnost uklanjanja KPK i mutnoće, brzinu taloženja te potrošnju elektroda. Polazna otopina je jako složenog sastava, opterećena s velikom količinom teško razgradljive organske tvari koja se nije značajno razgradila u jednostupanjskom postupku hibridnog ECZ. Rješenja su u dvostupanjskim ili višestupanjskim

Ključne riječi: elektrokoagulacija, zeolit, Faradayev zakon, procjedna voda, operativni troškovi

Rad sadrži: 57 stranica, 31 sliku, 16 tablica i 29 referenci

Jezik izvornika: hrvatski

Sastav Povjerenstva za obranu:

1. prof. dr. sc. Ladislav Vrsalović - predsjednik

2. prof. dr. sc. Sandra Svilović - član

3. prof. dr. sc. Nediljka Vukojević Medvidović – član mentor

Datum obrane: 17. listopada 2022.

Rad je u tiskanom i elektroničkom (pdf format) obliku pohranjen u Knjižnici Kemijsko-tehnološkog fakulteta u Splitu, Ruđera Boškovića 35.

BASIC DOCUMENTATION CARD

MASTER THESIS

University of Split

Faculty of Chemistry and Technology Split

Graduate study of Chemical Technology: Environmental Protection

Scientific area: Technical Sciences

Scientific field: Chemical Engineering

Thesis subject was approved by Faculty Council of Chemistry and Technology session no. 25 (March 18th 2022)

Supervisor: Nediljka Vukojević Medvidović, full professor, Ph. D.

ANALYSIS OF THE HYBRID PROCESS OF ELECTROCOAGULATION AND SYNTHETIC ZEOLITE OF DIFFERENT PARTICLE SIZES IN treatment of COMPOST leachate obtained by COMPOSTING USING ANAEROBIC PROCESS

Klara Magaš, 336

Abstract: The use of water creates wastewater that needs to be disposed of in a certain way or exposed to various purification procedures before being discharged into water bodies. In the process of composting, leachate is produced that is contaminated with organic and inorganic harmful substances and as such requires treatment before its discharge. As a result of industrialization, increasing amounts of wastewater with a complex composition are produced, for which should be applied more complex treatment procedures. Today, the emphasis is on the development of hybrid processes that combine or integrate two or more different physical, chemical and biological processes. This paper will analyze the hybrid process of electrocoagulation and synthetic zeolite with different particle size. During the process, the following indicators were determined: pH value, electrical conductivity, chemical oxygen consumption (COD), turbidity, total solids. The results show that the selection of the electrode material, the particle size of the used zeolite and the current density affect the COD and turbidity removal efficiency, the deposition rate and the electrode consumption. The starting solution has a very complex composition, contains a large amount of hard to degrade organic substances that were not significantly degraded in the one step process of the hybrid ECZ. The solutions are in two-stage or multi-stage processes.

Keywords: electrocoagulation, zeolite, Faraday's law, leachate, operative costs

Thesis contains: 57 pages, 31 figures, 16 tables and 29 references

Original in: Croatian

Defence committee:

1. Ladislav Vrsalović, full professor, Ph. D. - chair person

2. Sandra Svilović, full professor, Ph. D. - member

3. Nediljka Vukojević Medvidović, full professor, Ph. D. - supervisor

Defence date: October 17th 2022

Printed and electronic (pdf format) version of the thesis deposed in Library of Faculty of Chemistry and Technology in Split, Ruđera Boškovića, 35.

Ovaj diplomski rad je izrađen na Kemijsko-tehnološkom fakultetu u Splitu u Zavodu za inženjerstvo okoliša, pod mentorstvom prof. dr. sc. Nediljke Vukojević Medvidović.

Istraživanja su provedena u okviru projekta "Razvoj novog hibridnog procesa za obradu otpadnih voda na bazi elektrokoagulacije i sintetskog zeolita" financiranog od strane Zaklade Hrvatske akademije znanosti i umjetnosti (Zaklada HAZU).

Zahvaljujem se prof. dr. sc. Nediljki Vukojević Medvidović na strpljenju, dostupnosti i pruženoj pomoći pri osmišljavanju i izradi ovog diplomskog rada.

Veliko hvala prof. dr. sc. Ladislavu Vrsaloviću na pomoći pri provođenju eksperimentalnog dijela ovog rada.

Posebno želim zahvaliti svojim dragim prijateljima i svom dečku na pruženoj ljubavi, bezuvjetnoj podršci i neizmjernoj vjeri u moj uspjeh.

Hvala mojoj baki i djedu što su mi tijekom cijelog studiranja bili velika podrška i vjetar u leđa.

I naposljetku od srca zahvaljujem svojoj divnoj obitelji, posebice svom bratu i roditeljima koji su, iako kilometrima daleko, u svakom trenutku bili uz mene, omogućili da mi ništa ne nedostaje i upravo njima posvećujem ovaj rad.

ZADATAK DIPLOMSKOG RADA:

1. Pripremiti uzorke kompostne procjedne vode različitih početnih koncentracija izraženih preko kemijske potrošnje kisika (KPK) i analizirati pokazatelje: pH vrijednosti, električna vodljivost, mutnoća, kemijska potrošnja kisika (KPK) i ukupni isparni ostatak.

2. Provesti postupak obrade kompostnih procjednih voda procesom hibridnog procesa elektrokoagulacije i sintetskog zeolita. Proces obrade pratiti preko pokazatelja: pH vrijednost, električna vodljivost, temperatura, mutnoća, kemijska potrošnja kisika (KPK), ukupni isparni ostatak te izvesti zaključke.

3. Odrediti brzine taloženja i mase taloga za uzorke nakon provedbe hibridnog procesa elektrokoagulacije i sintetskog zeolita.

4. Ispitati utrošak aluminijevih elektroda tijekom hibridnog procesa elektrokoagulacije i sintetskog zeolita te izračunati operativne troškove.

SAŽETAK

Korištenjem vode nastaju otpadne vode koje je potrebno na određeni način zbrinuti ili podvrgnuti različitim postupcima pročišćavanja prije ispusta u vodna tijela. U procesu kompostiranja nastaju procjedne vode koje su onečišćene organskim i anorganskim štetnim tvarima i kao takve zahtijevaju obradu/tretman prije njihovog ispuštanja. Uslijed industrijalizacije i porasta standarada, nastaju sve veće količine otpadnih voda složenog sastava, za koje treba primijeniti i složenije postupke obrade. Danas je naglasak na razvoju hibridnih procesa koji kombiniraju ili integriraju dva ili više različitih fizikalnih, kemijskih i bioloških postupaka. U ovom radu analizirat će se hibridni proces elektrokoagulacije i sintetskog zeolita različite veličine čestica. Tijekom procesa određeni su sljedeći pokazatelji: pH vrijednost, električna vodljivost, kemijska potrošnja kisika (KPK), mutnoća, ukupni isparni ostatak. Također je provedena i analiza operativnih troškova korištenjem Faradayeva zakona i podataka o utrošku masa elektroda. Rezultati pokazuju da odabir materijala elektrode, veličina čestica korištenog zeolita i gustoće struje utječu na efikasnost uklanjanja KPK i mutnoće, brzinu taloženja te potrošnju elektroda. Polazna otopina je jako složenog sastava, opterećena s velikom količinom teško razgradljive organske tvari koja se nije značajno razgradila u jednostupanjskom postupku hibridnog ECZ. Rješenja su u dvostupanjskim ili višestupanjskim procesima.

SUMMARY

The use of water creates wastewater that needs to be disposed of in a certain way or exposed to various purification procedures before being discharged into water bodies. In the process of composting, leachate is produced that is contaminated with organic and inorganic harmful substances and as such requires treatment before its discharge. As a result of industrialization, increasing amounts of wastewater with a complex composition are produced, for which should be applied more complex treatment procedures. Today, the emphasis is on the development of hybrid processes that combine or integrate two or more different physical, chemical and biological processes. This paper will analyze the hybrid process of electrocoagulation and synthetic zeolite with different particle size. During the process, the following indicators were determined: pH value, electrical conductivity, chemical oxygen consumption (COD), turbidity, total solids. The results show that the selection of the electrode material, the particle size of the used zeolite and the current density affect the COD and turbidity removal efficiency, the deposition rate and the electrode consumption. The starting solution has a very complex composition, contains a large amount of hard to degrade organic substances that were not significantly degraded in the one step process of the hybrid ECZ. The solutions are in two-stage or multi-stage processes.

Sadržaj

UV	OD		1
1.	OPĆI I	DIO	2
1.	.1. Ele	ktrokoagulacija	2
	1.1.1.	Princip rada elektrokoagulacije	2
	1.1.2.	Prednosti i nedostaci elektrokoagulacije	8
1.	.2. Inte	egrirani procesi	9
	1.2.1.	Integracija procesa elektrokoagulacije i adsorpcije	9
1.	.3. Zeo	oliti	12
	1.3.1.	Prirodni zeoliti	13
	1.3.2.	Sintetski zeoliti	14
2.	EKSPE	ERIMENTALNI DIO	16
2.	.1. An	aliza procjedne vode nakon kompostiranja anaerobnim procesom	16
2.	.2. Ob	rada kompostne otpadne vode hibridnim procesom elektrokoagulacije i	
si	ntetskog	g zeolita	. 16
	2.2.1.	Provedba integriranog procesa	18
2.	.3. Par	ametri koji su praćeni prije, tijekom i nakon provedbe procesa EC-NaX	. 19
	2.3.1.	Određivanje pH vrijednosti	. 19
	2.3.2.	Određivanje električne vodljivosti	20
	2.3.3.	Određivanje temperature	21
	2.3.4.	Određivanje kemijske potrošnje kisika	21
	2.3.5.	Mutnoća	24
	2.3.6.	Određivanje ukupnog isparnog ostatka	25
	2.3.7.	Određivanje brzine taloženja suspenzije i masa taloga	25
	2.3.8.	Određivanje mase elektroda	26
3.	REZUI	LTATI	27
4.	RASPF	RAVA	33
4.	.1. An	aliza rezultata karakterizacije uzorka procjedne vode iz kompostiranja	33
4.2.	Anali	za rezultata parametara praćenih prije, tijekom i nakon provedbe	
integ	griranog	procesa elektrokoagulacije i obrade na zeolitu	34
	4.2.1.	Analiza rezultata pH vrijednosti	. 34
	4.2.2.	Analiza rezultata električne vodljivosti	37
	4.2.3.	Analiza rezultata temperature	39
	4.2.4.	Analiza rezultata kemijske potrošnje kisika (KPK)	42
	4.2.5.	Analiza rezultata mutnoće	44

	4.2.6.	Analiza rezultata ukupnog isparnog ostatka	46
	4.2.7.	Analiza testa taloženja suspenzije i mase taloga	47
	4.2.8.	Analiza rezultata masa elektroda	47
	4.2.9.	Analiza operativnih troškova	50
5.	ZAKL.	JUČAK	52
6.	LITER	ATURA	54

UVOD

Voda je neophodna za svakodnevni život ljudi kao i za rad brojnih pogona i industrija. Podržava sve funkcije tijela, svaki proces koji pretvara hranu u krv, kost i mišiće. Bez vode život na Zemlji ne bi bio moguć. U prošlosti su se uz vodu razvijale stare civilizacije i gradili grandiozni objekti. Voda je temeljni činitelj, ne samo gospodarskog i društvenog razvoja, već i opstanka ljudi u pojedinim područjima. Voda se danas koristi u domaćinstvu (za piće, pranje, čišćenje, kuhanje, održavanje zelenih površina), u poljoprivredi (za navodnjavanje), u industriji, stočarstvu i za ostale potrebe (sport, rekreacija, transport). Zemlja kao planet bogata je vodom, ali je geografska raspodjela, posebice slatke vode, obzirom na gustoću naseljenosti, vrlo različita. Nestašica vode najviše pogađa siromašne krajeve svijeta ograničavajući njihov gospodarski razvitak. Da bi se izbjegla "kriza vode" u budućnosti, uz ograničene i konačne vodne resurse, iskorištavanje vode mora biti mnogo racionalnije i učinkovitije nego što je danas. Vodnim resursima treba upravljati integralno i ostvarivati koncept održivog razvoja. Korištenjem vode nastaju otpadne vode koje je potrebno na određeni način zbrinuti ili podvrgnuti različitim postupcima pročišćavanja prije ispusta u vodna tijela.¹

Uslijed industrijalizacije i porasta standarada, nastaju sve veće količine otpadnih voda složenog sastava, za koje treba primijeniti i složenije postupke obrade. Danas je naglasak na razvoju hibridnih procesa koji kombiniraju ili integriraju dva ili više različitih fizikalnih, kemijskih i bioloških postupaka. U ovom radu analizirat će se hibridni proces elektrokoagulacije i sintetskog zeolita. Elektrokoagulacija je održiva alternativa za obradu vode i otpadnih voda primjenom električne struje. Sintetski zeolit se sintetizira u laboratorijskim uvjetima, oponašanjem hidrotermalnih procesa korištenjem povišene temperature ili tlaka i korištenjem prirodnih sirovina i/ili sintetskih silikata. U ovom radu naglasak će biti na ispitivanju utjecaja različite veličine čestica NaX na učinkovitost hibridnog procesa u obradi kompostne procjedne vode nastale anaerobnim procesom kompostiranja.

1. OPĆI DIO

1.1. Elektrokoagulacija

Elektrokoagulacija je našla svoju primjenu u obradi vode i otpadnih voda tek u 21. stoljeću. Brojnim istraživanjima pokazalo se da elektrokoagulacija uklanja širok spektar štetnih tvari i da se učinkovito primjenjuje za pročišćavanje raznih otpadnih voda koje sadrže teške metale, prehrambene proizvode, otpadna ulja, suspendirane čestice i ostale tvari sa štetnim utjecajem na okoliš. Međutim, zbog velike potrošnje struje i visoke cijene elektrokoagulacija se nije koristila u industrijskom sektoru. Rapidno povećanje broja onečišćenih voda potaknulo je industrijski sektor na istraživanje provedbe procesa elektrokoagulacije s ciljem pročišćavanja takvih voda. U današnje vrijeme zbog pandemije uzrokovane virusom COVID-19 i zbog rata u Ukrajini cijena struje raste, ali rješenje je korištenje struje iz obnovljivih izvora energije.¹

1.1.1. Princip rada elektrokoagulacije

Tehnologija elektrokoagulacije zasniva se na korištenju elektrokemijske ćelije koja se sastoji od dvije elektrode, anode i katode, uronjene u vodljivu otopinu ili elektrolit te povezane preko električnog kruga koji uključuje izvor struje i upravljački uređaj (slika 1.1). U ćeliji se odvijaju procesi oksidacije i redukcije. Na anodi se odvija proces oksidacije, a na katodi proces redukcije. Uslijed djelovanja električnog polja, tzv. "žrtvovana anoda", otpušta aktivne katione u otopinu, najčešće katione aluminija i željeza, koji se koriste za proces koagulacije. Istovremeno na katodi nastaju vodik i OH⁻ioni. Metalni kationi, oslobođeni iz anode, hidroliziraju u hidrokside, poli(hidrokside) i polihidroksi metalne spojeve. Nastali spojevi imaju snažnu sposobnost privlačenja raspršenih čestica i protuiona te uzrokuju koagulaciju. Kao rezultat toga, odbojne sile između koloidnih čestica slabe, čestice dolaze dovoljno blizu da prevladavaju van der Waalsove sile i dolazi do aglomeracije. ¹

U konačnici, elektrokoagulacija se sastoji od četiri procesa²:

- 1) Elektrokemijske reakcije na površini elektroda
- 2) Stvaranja koagulanta u vodenoj fazi
- 3) Adsorpcije štetne tvari

4) Uklanjanje elektroflotacijom, sedimentacijom i prianjanjem na mjehuriće

Slika 1.1 Shema elektrokoagulacijske ćelije³

U elektrokoagulacijskom procesu najčešće se koriste Al i Fe elektrode, na kojima se odvijaju reakcije prikazane sljedećim jednadžbama:

Reakcije na aluminijevoj elektrodi prikazane su jednadžbama (1-1) - (1-3)⁴

Na anodi:

•
$$Al(s) \to Al^{3+}(aq) + 3e^{-}$$
 (1-1)

Na katodi:

•
$$6 H_2 O(l) + 6 e^- \rightarrow 3 H_2(g) + 6 OH^-$$
 (1-2)

Precipitacija/taloženje:

•
$$Al^{3+}(aq) + 3 OH^{-} \rightarrow Al(OH)_{3}$$
 (1-3)

Reakcije na željeznoj elektrodi prikazane su jednadžbama (1-4) – (1-9)⁵

Na anodi:

•
$$Fe(s) \to Fe^{2+}(aq) + 2e^{-}$$
 (1-4)

•
$$Fe(s) \to Fe^{3+}(aq) + 3e^{-}$$
 (1-5)

•
$$2Fe^{2+}(aq) + \frac{1}{2}O_2(g) + H_2O(l) \rightarrow 2Fe^{3+}(aq) + 2OH^-$$
 (1-6)

Na katodi:

•
$$2H_20 + 2e^- \rightarrow H_2(g) + 20H^-$$
 (1-7)

Precipitacija/taloženje:

•
$$Fe^{2+}(aq) + 2 OH^{-} \rightarrow Fe(OH)_{2}$$
 (1-8)

•
$$Fe^{3+}(aq) + 3 OH^- \rightarrow Fe(OH)_3$$
 (1-9)

Reakcije na cinkovoj elektrodi prikazane su jednadžbama (1-10) – (1-11)⁶

Na anodi:

•
$$Zn \to Zn^{2+} + 2e^-$$
 (1-10)

Na katodi:

•
$$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$$
 (1-11)

pH vrijednost otopine

Prisutnost ionskih vrsta u otopini može se odrediti preko potencijal - pH dijagrama, tzv. Pourbaixovih dijagrama. Ovi dijagrami predstavljaju ovisnost potencijala metala o pH otopine za uspostavljene ravnoteže na određenom metalu. Dijagram se sastoji od nekoliko područja međusobno odijeljenih pravcima te se s termodinamičkog stajališta mogu procijeniti područje korozije, imuniteta i pasiviteta.

Na slikama 1.2, 1.3 i 1.4 su prikazani E_h – pH dijagrami za željezo, cink i aluminij.

Slika 1.2 E_h – pH dijagram (Fe)

Iz dijagrama se može vidjeti da pri potencijalima pozitivnijim od -0,6 i pri pH vrijednostima nižim od 9, dolazi do otapanja željeza pri čemu nastaje željezov (II) ion (Fe²⁺) koji je u ovom području stabilan. To znači da će željezo korodirati pod tim uvjetima. U drugim područjima može se vidjeti da korozija željeza može dovesti do nastajanja željezova (III) iona (Fe³⁺) ukoliko do korozije dođe pri visokim anodnim potencijalima (iznad 0.8 V) i niskim pH vrijednostima (ispod pH 4). Pri lužnatim uvjetima moguć je nastanak različitih spojeva željeza kao što su hidroksid željeza [Fe(OH)₂], različiti oksidi Fe₃O₄ ili Fe₂O₃ a u vrlo alkalnim uvjetima složeni ioni HFeO₂⁻. Prisutnost relativno širokog područja u kojem su produkti korozije željeza čvrsti i vjerojatno zaštitni, ukazuje da željezo može mnogo manje korodirati pod ovim potencijalnim/pH uvjetima. Također je vidljivo da je pri potencijalima nižim od -0.6 područje imuniteta u kojem nije moguća korozija željeza jer su potencijali negativniji od ravnotežnog potencijala Fe/Fe²⁺ elektrode, tako da je u ovom području može doći samo do katodne reakcije izlučivanja vodika.

Slika 1.3 E_h – pH dijagram za sustav Zn-H₂O na 25 °C

Prema Pourbaixovom dijagramu za Zn, u nedostatku drugih koordinirajućih liganada, cink je prisutan kao hidratirani Zn^{2+} (aq) u čitavom rasponu redoks potencijala i pH vrijednosti od 0 do oko 8,5.

Slika 1.4 E_h – pH dijagram za sustav Al-H₂O na 25 °C

Iz Pourbaixovog dijagrama za aluminij vidljivo je da aluminij korodira u rasponu od 4 > pH > 8 stvarajući Al^{3+} ione pri niskim pH vrijednostima i AlO^{2-} ione pri visokim pH vrijednostima: U približno neutralnom pH području aluminij pokazuje pasivnost stvarajući vrlo stabilan oksid $Al_2O_3 \times 3H2O$ (konstanta topljivosti $<10^{-32}$).

Faradayev zakon i izračun operativnih troškova

Svi troškovi nastali za vrijeme nabave materijala korištenih u procesu, za vrijeme provođenja procesa te nakon provođenja procesa ubrajaju se u operativne troškove. Kada je riječ o procesu elektrokoagulacije operativni troškovi se sastoje od: utroška materijala elektroda, potrošnje električne energije i zeolita te zbrinjavanja otpadnog mulja.¹⁰ Operativni troškovi procesa za uzorke bez dodatka zeolita računaju se prema formuli:

$$Operativni troškovi = a C_{energija} + b C_{elektroda}$$
(1-12)

Za uzorke s dodatkom zeolita dodaje se trošak upotrebljenog zeolita:

$$Operativni troškovi = a C_{energija} + b C_{elektroda} + c C_{zeolit}$$
(1-13)

gdje je:

a - pretpostavljeni iznos cijene električne energije

b – prosječna tržišna cijena aluminija

c- prosječna cijena sintetskog zeolita

Utrošak mase elektroda računa se prema Faradayevom zakonu:

$$C_{\text{elektroda}} = \frac{I \cdot t \cdot Mw}{z \cdot F \cdot V}$$
(1-14)

gdje je:

I-jakost struje, A

t – trajanje procesa, h

Mw-molekularna masa aluminija/ željeza/ cinka, g/mol

- z broj prenesenih elektrona (z = 2 ili z = 3)
- F Faradayeva konstanta (96 487 C/mol)
- V efektivni volumen reaktora, m³

Utrošak električne energije računa se prema izrazu:

$$C_{\text{energija}} = \frac{U \cdot I \cdot t}{V}$$
(1-15)

gdje je:

U – napon izvora struje, V

U izračun operativnih troškova nisu uključeni troškovi potrošnje elektrolita.

1.1.2. Prednosti i nedostaci elektrokoagulacije

U usporedbi sa klasičnim metodama, oprema za provedbu elektrokoagulacije je male veličine i jednostavna za rukovanje pa se proces može provoditi u malim i kompaktnim postrojenjima za pročišćavanje. Time su smanjeni investicijski troškovi, troškovi energije i omogućena je potpuna automatizacija procesa. U procesu elektrokoagulacije nema potrebe za korištenjem kemijskih dodataka, osim mogućeg dodatka elektrolita, čime je minimizirana pojava sekundarnog onečišćenja. Stoga se EK često naziva "zelenom tehnologijom". Također se proizvodi i znatno manja količina mulja, koji sadrži manje vode, flokule (nakupine) su veće i stabilnije i lakše se talože. Prednost elektrokoagulacije je i sposobnost uklanjanja sitnih koloidnih čestica jer se djelovanjem električnog polja ubrzava njihovo gibanje i sudaranje što pospješuje njihovu aglomeraciju. Kao posljedica toga, efluent sadrži manje ukupnih otopljenih tvari u usporedbi s drugim kemijskim procesima što rezultira nižim troškovima u naknadnim procesima obrade vode. Pri elektrokoagulaciji dolazi i do stvaranja plinskih mjehurića koji prisutne tvari odnose na vrh reaktora gdje se lakše prikupljaju i uklanjaju.¹

Međutim, postoje i nedostaci procesa elektrokoagulacije. Jednim od glavnih ograničenja smatra se korištenje električne energije uslijed rapidnog porasta cijena. Pojava pasivnog ili oksidnog filma na površini elektroda može uzrokovati smanjenje učinkovitosti procesa jer se sprječava razmjena elektrona i otapanje metala. Proces zahtijeva određenu vodljivost otopine koja se kod otpadnih voda i prirodne vode najčešće postiže uporabom NaCl-a kao elektrolita. Međutim, problem može biti toksičnost efluenta izazvana prisustvom nusprodukata klora iz dodanog NaCl elektrolita.²

1.2. Integrirani procesi

Mnogi znanstvenici su usredotočeni na integraciju dvaju ili više pojedinačnih procesa koji se provode istovremeno ili uzastopno kako bi se postigla zadovoljavajuća kakvoća efluenta. Takvi procesi se nazivaju hibridnim, integriranim ili kombiniranim procesima.²

1.2.1. Integracija procesa elektrokoagulacije i adsorpcije

Elektrokoagulacija i adsorpcija često su korištene metode za pročišćavanje otpadnih voda. Obje metode se pojedinačno koriste za uklanjanje širokog spektra nečistoća, ali u posljednje vrijeme sve je više istraživanja usredotočeno na proučavanje učinka kombinirane metode adsorpcije i elektrokoagulacije.²

Adsorpcija se smatra jednom od najisplativijih tehnika za pročišćavanje voda gdje se kao adsorbens najčešće koristi aktivni ugljen. Predstavlja ekološki prihvatljivu i jeftinu sirovinu koja se može pripraviti iz ostataka biomase ili otpadnih materijala, a zahvaljujući poroznoj strukturi i velikoj specifičnoj površini ima široku uporabu u procesima pročišćavanja industrijskih otpadnih voda. Također se pokazao kao učinkovit adsorbens za uklanjanje organskih i anorganskih onečišćujućih tvari u vodenom mediju. Tijekom adsorpcije, otopljene tvari difundiraju u pore adsorbenta. Budući da se adsorpcija odvija na površini, potrebna je velika površina i poroznost adsorbenta. ¹³

Integralna metoda, koja kombinira proces elektrokoagulacije i adsorpcije se odvija slijedno; prvo elektrokoagulacija nakon čega slijedi adsorpcija te adsorpcija nakon čega slijedi elektrokoagulacija.^{13,14}

Slika 1.5 Integralna metoda (kombinacija elektrokoagulacije i adsorpcije na aktivnom ugljenu)¹³

Proces elektrokoagulacije u kojem su korištene Fe/Al elektrode kombiniran je sa adsorpcijom na aktivnom ugljenu. Metodom u kojoj se najprije vrši adsorpcija, a potom elektrokoagulacija uklonjeno je oko 95 % ukupnog organskog ugljika (TOC). Štoviše, uklanjanje TOC-a, nakon adsorpcije, pri korištenju Al i Fe elektrode približno je isto (Al - 94,4 %, Fe – 94,5 %). Međutim, kada se elektrokoagulacija i adsorpcija provode pojedinačno uklanjanje iznosi 79 – 89 %. Također je zaključeno da u hibridnoj metodi minimalni razmak između elektroda mora biti 5 mm kako ne bi došlo do taloženja aluminija i željeza. Kombinacija adsorpcije na aktivnom ugljenu sa Al/Fe elektrokoagulacijom pokazala se kao dobra metoda za uklanjanje organskih tvari iz vodene otopine. ¹³

U tablici 1.1 dat je pregled dosadašnjih istraživanja kombiniranih metoda.

REFERENCA	PROVEDBA PROCESA	OPIS EKSPERIMENTA	REZULTATI
Linares- Hernández i dr. (2007) ¹⁵	Elektrokoagulacija, zatim biosorpcija	Parametri praćeni u procesu su boja, zamućenost, KPK, BPK₅ i sadržaj fekalnih koliforma	Učinkovitost uklanjanja boje, mutnoće i fekalnih koliforma (97, 98.8 i 99.9 %), KPK i BPK₅ niže od 84, tj. 78 %
Narayanan i Ganesan (2009) ¹⁶	Elektrokoagulacija i adsorpcija na aktivnom ugljenu	Uklanjanje kromata iz sintetičke otpadne vode	Dodatak adsorbenta povećava brzinu uklanjanja kromata pri nižoj gustoći struje
Chang i dr. (2010) ¹⁷	Chang i dr. (2010) ¹⁷ Elektrokoagulacija (Fe elektroda; elektrolit NaCl), a zatim adsorpcija na aktivnom ugljenu Uklanjanje azo - boje RB5 sintetičke otopine		Uklanjanje KPK samo 39 %, toksičnost efluenta zbog nastalih međuprodukata
Ouaissa i dr. (2012) ¹⁸	Elektrokoagulacija i adsorpcija na granuliranom ugljiku	Praćeni parametri u procesu pročišćavanja su KPK, zamućenost i sadržaj kroma	Učinkovitost uklanjanja KPK, mutnoće i kroma su 75, 96 i 92 %
Elabbas i dr. (2020) ¹⁴	Elektrokoagulacija i adsorpcija s ljuskom jajeta	Uklanjanje kromata iz otpadne vode iz kožne industrije	Učinkovitost uklanjanja kromata kombiniranom metodom je 99 %, a samostalnim EK procesom 63 %

Tablica 1.1 Povijest dosadašnjih istraživanja kombiniranih metoda 2

1.3. Zeoliti

Zeoliti su prirodni ili sintetski hidratizirani alumosilikati, opće formule:

 $M'M''_{0,5}[(Al_2O_3)_x(SiO_2)_y(H_2O)_z]$, gdje su M' i M'' alkalijski i zemnoalkalijski metali, x i y oksidna varijabla, z broj molekula vode. Primarne strukturne jedinice zeolita su SiO₄ i AlO₄⁻ tetraedri povezani u veće, sekundarne jedinice preko zajedničkih kisikovih atoma. Sekundarne jedinice se povezuju u poliedre koji tvore kanale različitih dimenzija, tzv. kaveze (slika 1.6). Poliedri čine tercijarne strukture, a njihovim povezivanjem nastaju odgovarajući zeoliti. ¹⁹

Slika 1.6 Tercijarne strukture zeolita

Zeoliti imaju široku primjenu kao katalizatori, ionski izmjenjivači i molekulska sita zahvaljujući specifičnim svojstvima i karakterističnoj strukturi šupljina koje se nazivaju kanalima. Dimenzije pora zeolita su veličine molekula stoga selektivno odvajaju molekule na temelju njihovih različitih veličina. Zbog tog svojstva često se nazivaju molekulskim sitima. Također se koriste i kao ionski izmjenjivači zbog svojstva izmjene kationa. Naime, aluminij ima naboj -1 i taj višak naboja neutraliziraju kationi alkalijskih i zemnoalkalijskih metala. Važno je spomenuti i katalitičko djelovanje zeolita koji su zbog visoke selektivnosti i aktivnosti korišteni u brojnim procesima krekiranja i hidrokrekiranja.¹⁹

1.3.1. Prirodni zeoliti

Većina tehnologija koja koristi prirodne zeolite za pročišćavanje voda temelji se na njihovoj sposobnosti izmjene kationa. Kationi teških metala i drugih štetnih tvari izmjenjuju se s kationima prisutnima u strukturi zeolita i na taj način se uklanjaju iz vode. Prirodni zeoliti i njihovi modificirani oblici koriste se za odvajanje, vezivanje i kemijsku stabilizaciju opasnih organskih, anorganskih i radioaktivnih tvari u tlima i vodenim sustavima. Nakon primjene kao adsorbensa i ionskog izmjenjivača zeolit se lako može regenerirati i ponovno koristiti bez gubitka svog izvornog kapaciteta. Osim navedenog, relativno su jeftini, ekološki prihvatljivi i lako dostupni.^{2,20}

Zeoliti su visoko selektivni za NH₄⁺ ione i teške metale pa imaju široku primjenu u obradi prirodnih i otpadnih voda iz komunalnih, industrijskih i poljoprivrednih izvora. Uz interkristalnu izmjenu iona mogu djelovati kao adsorbenti i filteri za organske molekule i mikroorganizme, čime mogu značajno doprinijeti pročišćavanju voda. ²⁰

Slika 1.7 Prirodni zeolit²¹

Do danas je objavljeno tek nekoliko radova na temu integracije procesa elektrokoagulacije i prirodnog zeolita koji su prikazani u tablici 1.2.

1.3.2. Sintetski zeoliti

Zeoliti su prepoznati kao minerali prirodnog podrijetla, ali trenutno postoji više od stotinu različitih tipova struktura zeolita koji se mogu dobiti sintetski. U prirodnim uvjetima zeoliti nastaju kao rezultat reakcije vulkanskog pepela sa vodom, koja se odvija nekoliko tisuća godina. U laboratorijskim uvjetima moguće je oponašanje hidrotermalnih procesa korištenjem povišene temperature ili tlaka i korištenjem prirodnih sirovina i/ili sintetskih silikata. Reakcija sinteze zahtijeva odgovarajuću opremu, podlogu i energiju. Zbog toga cijena ovakvog zeolita može biti puno viša od cijene prirodnog zeolita. Stoga su istraživanja često usmjerena na traženje jeftinijih i lakše dostupnih supstrata za proizvodnju zeolita pri čemu se također nastoji smanjiti cijena proizvodnje. Trenutna istraživanja na temu sinteze zeolita su ekološki usmjerena, što podrazumijeva korištenje prirodnih sirovina ili već korištenih sirovina za ovu namjenu.

Sintetski zeoliti su glavna alternativa prirodnim zeolitima. Kod sintetskih zeolita mogu se prilagoditi fizičke i kemijske karakteristike ovisno o potrebama, a i ujednačeniji su po kvaliteti od svojih prirodnih ekvivalenata. Kada je riječ o sintezi zeolita, pažnja je usmjerena na korištenje prirodnih sirovina zbog ekonomičnosti, dok se korištenje sirovina sa složenim kemijskim sastavom izbjegava za korištenje u komercijalne svrhe jer dobiveni proizvod nije 100 % - tne čistoće.²²

REFERENCA	OPIS EKSPERIMENTA	REZULTATI		
Hamid i dr. (2020) ²³	Uklanjanje amonijaka iz procjedne vode s odlagališta otpada	Uklanjanje amonijaka do 71 % pri sljedećim parametrima: zeolit (140 g/L), gustoća struje (600 A/m²), trajanje elektrolize (60 min), pH(8,20)		
Hamid i dr. (2020) ²⁴	Uklanjanje amonijaka visoke koncentracije (3,442 mg/L) iz procjednih voda odlagališta otpada	Učinkovitost uklanjanja amonijaka je 70 %, a boje 88 %. Samostalnim EK procesom učinkovitost za amonijak je 19 %, a za boju 71 %		
Hamid i dr. (2021) ²⁵	Uklanjanje koncentriranog amonijakalnog dušika i boje iz procjedne vode odlagališta otpada	Uklanjanje amonijakalno dušika je (83±2) %, a boj (95±1) %		
N. V. Medvidović i dr. (2022) ²	Obrada procjedne vode iz kompostiranja biootpada	Dobiveni uzorak je pogodan za ispust u sustav javne odvodnje		
M. Zolfaghari i dr. (2020) ²⁶	Uklanjanje amonijaka iz otpadnih voda rudnika zlata	Kapacitet zeolita za adsorpciju amonijaka značajno je smanjen zbog prisutnosti Ca ²⁺ , Mg ²⁺ , Fe ³⁺ , Al ³⁺ čija je učinkovitost uklanjanja iznosila 90 %		
A. Ziouvelou i dr. (2019) ²⁷	Pročišćavanje podzemnih voda onečišćenih nitratima	Najveće količine nitrata su uklonjene bez dodatka elektrolita ili s najnižom koncentracijom elektrolita. Nusproizvodi koji nastaju (amonijak i otopljeni aluminij) uklonjeni su adsorpcijom na zeolitu		

						2
TT 11 1	ΔT	1	1 / 1	1	· 1	1. 1
Lablica L	/ Inton	<u>200110 010</u>	Vtrovoga	1190110 1	nriroanoa	7001110 -
		$a \cup a \cup$	$\kappa u v \kappa v a s$		1/1 $1/1$ $(A 1110)$	ZADILIA
1 000 00000 1					prino en o B	20011000

2. EKSPERIMENTALNI DIO

2.1. Analiza procjedne vode nakon kompostiranja anaerobnim procesom

Kompostiranje biootpada provedeno je u kućnom komposteru C-EcoForHome device" ručne izvedbe uz primjenu anaerobnih mikroorganizama "Compost Help". Tijekom kompostiranja prikupljena je procjedna voda, a uzorci su čuvani u hladnjaku. Nakon završenog kompostiranja, uzorci su izmiješani, a u dobivenom miješanom uzorku procjedne vode nakon kompostiranja anaerobnim procesom (uz razrjeđenje R=5) određeni su sljedeći pokazatelji:

- pH vrijednost
- električna vodljivost
- kemijska potrošnja kisika (KPK)
- mutnoća
- ukupni isparni ostatak.

Karakterizacija je provedena prema Standardnim metodama ispitivanja voda i otpadnih voda.²⁸

2.2. Obrada kompostne otpadne vode hibridnim procesom elektrokoagulacije i sintetskog zeolita

Obrada kompostne procjedne vode provedena je primjenom hibridnog procesa elektrokoagulacije i sintetskog zeolita (EC-NaX) u elektrokemijskoj ćeliji, volumena 350 mL, s uronjenim elektrodama od legure aluminija AA2007, cinka i željeza, dodatkom zeolita 20 g/L, bez podešavanja početnog pH otopine i bez dodatka elektrolita, na udaljenosti elektroda od 3 cm i brzini miješanja od 100 okr/min. Gustoća struje se mijenjala u rasponu i=0,009-0,001 A/m², uz tri veličine čestica NaX: <90 µm, 90-160 µm i 160-600 µm. Eksperimenti su označeni C1-C9,a opisani su u tablici 2.1.

Broj eksp.	Opis
1	ECZ-Fe, NaX (< 90 μm), i=0.003 A/cm ² , 10 min
2	ECZ-Al, NaX (< 90 µm), i=0.009 A/cm ² , 20 min
3	ECZ-Zn, NaX (< 90 μm), i=0.018 A/cm ² , 30 min
4	ECZ-Al, NaX (90-160 μm), i=0.003 A/cm ² , 30 min
5	ECZ-Zn, NaX (90-160 µm), i=0.009 A/cm ² , 10 min
б	ECZ-Fe, NaX (90-160 μm), i=0.018 A/cm ² , 20 min
7	ECZ-Zn, NaX (160-600 µm), i=0.003 A/cm ² , 20 min
8	ECZ-Fe, NaX (160-600 μm), i=0.009 A/cm ² , 30 min
9	ECZ-Al, NaX (160-600 μm), i=0.018 A/cm ² , 10 min

Tablica 2.1 Opis provedenih eksperimenata

Tijekom EC-NaX procesa kontinuirano se mjerila vodljivost, pH i temperatura, a na početku i na kraju svakog eksperimenta određivani su KPK i mutnoća. Na slici 2.1 prikazana je izvedba EC-NaX procesa.

Slika 2.1 Provedba integrirane elektrokoagulacije i sintetskog zeolita

Materijali elektroda korišteni u ovom radu su: legura aluminija AA2007 serije 2000, u kojoj je glavni legirni element bakar (Al= 92,58 %, Cu=3,84%); ugljični čelik u kojem su

glavni elementi željezo i bakar (Fe=98,27%, Cu=1,17%) i komercijalne cinkove žrtvovane anode u kojima su osnovni elementi cink i aluminij (Zn=99,31-99,76%, Al=0,1-0,5%).

2.2.1. Provedba integriranog procesa

Proces elektrokoagulacije proveden je u šaržnoj elektrokemijskoj ćeliji od 350 mL,s uronjenim elektrodama. Eksperimenti su planirani prema Taguchijevom dizajnu ortogonalnog niza L9 (tablica 2.2). Provedeno je 9 eksperimenata u svrhu ispitivanja utjecaja različitih materijala elektroda (Fe, Al, Zn), veličine čestica ($< 90 \mu$ m, 90-160 μ m, 160-600 μ m), gustoće struje (0,003 A/cm², 0,009 A/cm², 0,018 A/cm²) te kontaktnog vremena (10, 20 i 30 min). Razmak između elektroda održavan je na 3 cm. Jakost struje i primijenjeni napon bili u rasponu od 0,1-0,3 A, odnosno 8,3-29,9 V. U tablici 2.2 dan je pregled eksperimentalnih uvjeta tijekom 9 eksperimenata.

	Eksperiment	Veličina čestica, µm	Gustoća struje, A/cm ²	Materijal elektrode	Vrijeme kontakta, min
1	ECZ-Fe, NaX (< 90 μm),				
	i=0,003 A/cm ² , 10 min	< 90	0,003	Fe	10
2	ECZ-Al, NaX (< 90 μm),				
	i=0,009 A/cm ² , 20 min	< 90	0,009	Al	20
3	ECZ-Zn, NaX (< 90 μm),				
	i=0.018 A/cm ² , 30 min	< 90	0.018	Zn	30
4	ECZ-Al, NaX (90-160 μm),				
	i=0.003 A/cm ² , 30 min	90-160	0,003	Al	30
5	ECZ-Zn, NaX (90-160 μm),				
	i=0.009 A/cm ² , 10 min	90-160	0,009	Zn	10
6	ECZ-Fe, NaX (90-160 μm),				
	i=0.018 A/cm ² , 20 min	90-160	0.018	Fe	20
7	ECZ-Zn, NaX (160-600 μm),				
	i=0.003 A/cm ² , 20 min	160-600	0,003	Zn	20
8	ECZ-Fe, NaX (160-600 μm),				
	i=0.009 A/cm ² , 30 min	160-600	0,009	Fe	30
9	ECZ-Al, NaX (160-600 μm),				
	i=0.018 A/cm ² , 10 min	160-600	0.018	Al	10

Tablica 2.2 Pregled eksperimentalnih uvjeta tijekom 9 eksperimenata

Prije svakog eksperimenta, elektrode su brušene i polirane vlažnim SiC brusnim papirima (do oznake P800), ultrazvučno očišćene u 70 % etanolu i deioniziranoj vodi. Nakon provedbe EC procesa provedeno je ispitivanje taloženja primjenom Kynchove teorije sedimentacije i određeni su fizikalno-kemijski pokazatelji otpadne vode (pH, električna vodljivost, temperatura, mutnoća, KPK). Na temelju vrijednosti pokazatelja izvornog uzorka i uzorka nakon obrade analizirat će se učinkovitost elektrokoagulacije.

Sintetski zeolit (oznaka SZ) kupljen od proizvođača Sigma-Aldrich, tip zeolita je NaX s rSi/Al=1,23. Zeolit je usitnjen i prosijan, a u pokusima je korištena granulacija uz 3 veličine čestica (< 90 μ m, 90-160 μ m, 160-600 μ m).

2.3. Parametri koji su praćeni prije, tijekom i nakon provedbe procesa EC-NaX

Tijekom provođenja hibridnog procesa elektrokoagulacije i obrade na zeolitu praćena je pH vrijednost, električna vodljivost i temperatura. Prije i nakon provedbe eksperimenta određivani su mutnoća, kemijska potrošnja kisika (KPK), ukupni isparni ostatak te vagane mase elektroda. Nakon ECZ eksperimenta, proveden je test taloživosti.

2.3.1. Određivanje pH vrijednosti

Mjerenje pH vrijednosti provedeno je tijekom provođenja ECZ u vremenskim intervalima od 2, 5, 10, 15, 20, 25 i 30 minuta. Za mjerenje je korišten laboratorijski pH - metar prikazan na slici 2.2.

Slika 2.2 pH-metar tipa Mettler Toledo

Prije mjerenja elektroda pH-metra se ispire destiliranom vodom i zatim suši papirom. Nakon uranjanja elektrode potrebno je pričekati da se vrijednost koju pokazuje pH - metar ustali te je zatim očitati. Rezultati određivanja pH vrijednosti prikazani su u tablici 3.1.

2.3.2. Određivanje električne vodljivosti

Mjerenje električne vodljivosti provedeno je tijekom provođenja ECZ u vremenskim intervalima od 2, 5, 10, 15, 20, 25 i 30 minuta. Mjerenje električne vodljivosti provodi se konduktometrom prikazanim na slici 2.3, pri temperaturi od 25 °C. Izražava u S/m ili mS/m. Rezultati određivanja električne vodljivosti prikazani su u tablici 3.2.

Slika 2.3 Konduktometar tipa Mettler Toledo

2.3.3. Određivanje temperature

Mjerenje temperature provedeno je tijekom provođenja ECZ u vremenskim intervalima od 2, 5, 10, 15, 20, 25 i 30 minuta. Mjerenje je provedeno korištenjem standardnog termometra. Rezultati određivanja temperature prikazani su u tablici 3.3.

2.3.4. Određivanje kemijske potrošnje kisika

Određivanje kemijske potrošnje kisika (KPK) provedeno je prije i nakon provođenja ECZ eksperimenta. Korištena je bikromatna metoda, a KPK se izražava u mg O₂/L.

Opis bikromatne metode: oksidacija s K₂Cr₂O₇ provodi se uz H₂SO₄ ključanjem uzorka uz refluks, uz Ag₂SO₄ kao katalizator koji potpomaže oksidaciji organskih tvari i HgSO₄ koji služi za uklanjanje interferencija klorida. Oksidacija tvari sa K₂Cr₂O₇, uz njegovu redukciju se odvija prema reakciji:

$$Cr_2O_7^{2-} + 14 H^+ + 6 e^- \Leftrightarrow 2 Cr^{3+} + 7 H_2O$$
 (2-1)

Višak bikromata se titrira s otopinom amonij željezo(II)sulfat heksahidrata, Fe(NH₄)₂(SO₄)₂ uz indikator feroin prema reakciji:

$$6 \operatorname{Fe}^{2+} + \operatorname{Cr}_2 \operatorname{O}_7^{2-} + 14 \operatorname{H}^+ \Leftrightarrow 6 \operatorname{Fe}^{2+} + 2 \operatorname{Cr}^{3+} + 7 \operatorname{H}_2 \operatorname{O}$$
(2-2)

Potrebne kemikalije:

- 0,0417 mol/L otopine K₂Cr₂O₇

- nekoliko zrnaca HgSO₄
- koncentrirana H₂SO₄ s Ag₂SO₄
- indikator feroin
- 0,025 mol/L otopina Mohrove soli.

Potrebni uređaji i pribor:

- odmjerna tikvica, 100 mL
- digestor
- 6 staklenih epruveta
- Erlenmayerove tikvice
- pipeta
- bireta
- kapaljka

Postupak rada:

10 mL uzorka se razrijedi u odmjernoj tikvici od 100 mL, a zatim se u epruvete doda po 5 mL razrijeđenog uzorka, 3 mL otopine K₂Cr₂O₇, nekoliko zrnaca HgSO₄, te lagano uz stijenku 7 mL H₂SO₄ s Ag₂SO₄. Za pripremu slijepe probe se umjesto uzorka dodaje destilirana voda. Na epruvete se stavi povratno hladilo te se zatim kuha u digestoru 1,5 h na temperaturi od 120 °C što je prikazano na slici 2.4. Nakon što je zavšeno kuhanje, smjesa se ispere destiliranom vodom, a zatim se hladi do sobne temperature i titrira s Mohrovom soli uz feroin kao indikator do promjene boje iz žute u crvenu.

Slika 2.4 Kuhanje smjese u digestoru uz refluks

Izračunavanje KPK:

Kemijska potrošnja kisika izračunava se prema formuli:

$$KPK_{Cr} = \frac{(b-a) \cdot c_{Fe(II)} \cdot f_{Fe(II)} \cdot \frac{1}{4} \cdot M(O_2) \cdot R \cdot 1000}{V_{uzorka}}$$
(2-3)

gdje je:

b – volumen otopine Fe(II) utrošen za titraciju slijepe probe, mL

a - volumen otopine Fe(II) utrošen za titraciju uzorka, mL

cFe(II) - koncentracija otopine Fe(II), 0,025 mol/L

 $f_{Fe(II)} - faktor otopine Fe(II),$

 $M(O_2)-32 \ g/mol$

R – faktor razrijeđenja

 $V_{uzorka} - volumen uzorka, 5 mL.$

Primjer proračuna KPK vrijednosti početnog uzorka simulirane procjedne vode:

$$b = 31,85 \text{ mL}$$

a = 25,925 mL
c = 0,025 mol/L
f = 0,995
R = 1

$$V_{uzorka} = 5 mL$$

KPK = ?
 $KPK_{Cr} = \frac{(31,85 - 25,925)mL \cdot 0,025mol/L \cdot 0,995 \cdot 40 \cdot 8000}{5mL}$

$$KPK_{Cr} = 9432,6 \text{ mg } O_2/L$$

Rezultati određivanja KPK početnog uzorka simulirane procjedne vode te uzoraka nakon ECZ, prikazani su u tablici 3.4.

2.3.5. Mutnoća

Mjerenje mutnoće provedeno je prije i nakon provođenja ECZ u. Mutnoća se određuje turbidimetrom koji mjeri intenzitet svjetlosti koju raspršene čestice prisutne u uzorku vode adsorbiraju, a zatim raspršuju u svim smjerovima. Izražava se u jedinicama NTU (engl. Nephelometric Turbidity Units). Na slici 2.5 prikazan je turbidimetar korišten u navedenim mjerenjima. Rezultati određivanja mutnoće prikazani su u tablici 3.5.

Slika 2.5 Turbidimetar

2.3.6. Određivanje ukupnog isparnog ostatka

Ukupni isparni ostatak ukazuje na sadržaj ukupno otopljenih i raspršenih tvari u otpadnoj vodi. Određuje se odmjeravanjem 10 mL uzorka u prethodno izvaganu posudicu koju se ostavlja na sušenje do ustaljenja mase na temperaturi od 105 °C. Nakon postupaka određena je masa posudica s isparnim ostatkom. Iz razlike u masama odredi se ukupni isparni ostatak, prema jednadžbi:

$$TS = \frac{m2 - m1}{V} \cdot 1000$$
 (2-4)

gdje je:

TS - ukupni isparni ostatak, mg/L

m1 - masa prazne posudice, g

m2 - masa posudice s uzorkom nakon isparavanja i sušenja na 105 °C, g

V - volumen uzorka, mL

Rezultati određivanja TS uzoraka prije i nakon ECZ prikazani su u tablici 3.6.

2.3.7. Određivanje brzine taloženja suspenzije i masa taloga

U graduiranu menzuru se ulije uzorak koji je prethodno obrađen procesom ECZ. Zatim se u vremenskim intervalima od 5 min bilježi visina stupca mutnog dijela uzorka. Taloženje se prati 30 minuta a zatim se sadržaj menzure filtrira na filter papiru. Nakon filtracije i sušenja određuje se masa taloga.

Slika 2.6 Određivanje taloživosti

Rezultati određivanja brzine taloženja suspenzije nakon ECZ, prikazani su u tablici 3.7. Nakon taloženja određene su mase taloga na analitičkoj vagi. Masa filter papira korištenog za filtraciju nakon taloženja bila je poznata. Nakon filtracije i sušenja određena je masa taloga koji se nakupio na filter papiru iz čega je određena masa taloga. Rezultati određivanja mase taloga uzoraka nakon EC, prikazani su u tablici 3.8.

2.3.8. Određivanje mase elektroda

Mase obje elektrode odredile su se vaganjem prije eksperimenta, a nakon svakog eksperimenta su se sušile a zatim vagale na analitičkoj vagi. Podaci o masama elektroda prije i nakon postupka prikazani su u tablici 3.9.

3. REZULTATI

U nastavku su prikazani rezultati parametara praćenih prije, tijekom i nakon provedbe integriranog procesa elektrokoagulacije i obrade na zeolitu.

Tablica 3.1 Rezultati određiv	'anja p	oH vrij	ednosti
-------------------------------	---------	---------	---------

	Opis eksperimenta	pH vrijednost tijekom vremena, -							
		0	2	5	10	15	20	25	30
1	ECZ-Fe, NaX (< 90 μm), i=0,003 A/cm ² , 10 min	4,03	5,31	5,41	5,52	/	/	/	/
2	ECZ-Al, NaX (< 90 μm), i=0,009 A/cm ² , 20 min	4,03	5,37	5,50	5,73	5,92	6,20	/	/
3	ECZ-Zn, NaX (< 90 μm), i=0,018 A/cm ² , 30 min	4,03	5,58	6,00	6,59	7,54	8,27	8,34	8,56
4	ECZ-Al, NaX (90-160 μm), i=0,003 A/cm ² , 30 min	4,03	4,56	4,59	4,64	4,70	4,74	4,78	4,83
5	ECZ-Zn, NaX (90-160 μm), i=0,009 A/cm ² , 10 min	4,03	4,61	4,83	5,24	/	/	/	/
6	ECZ-Fe, NaX (90-160 μm), i=0,018 A/cm ² , 20 min	4,03	4,58	4,69	4,87	5,04	5,25	/	/
7	ECZ-Zn, NaX (160-600 μm), i=0,003 A/cm ² , 20 min	4,03	4,39	4,46	4,57	4,69	4,81	/	/
8	ECZ-Fe, NaX (160-600 μm), i=0,009 A/cm ² , 30 min	4,03	4,35	4,41	4,53	4,62	4,73	4,85	4,95
9	ECZ-Al, NaX (160-600 μm), i=0,018 A/cm ² , 10 min	4,03	4,34	4,45	4,63	/	/	/	/

		1							
	Opis eksperimenta]	Električ	ena vod	ljivost t	ijekom	vremen	a, mS/n	n
		0	2	5	10	15	20	25	30
1	ECZ-Fe, NaX (< 90 μm) , i=0,003 A/cm ² , 10 min	3,54	4,44	4,53	4,62	/	/	/	/
2	ECZ-Al, NaX (< 90 μm), i=0,009 A/cm ² , 20 min	3,54	4,55	4,57	4,70	4,72	4,60	/	/
3	ECZ-Zn, NaX (< 90 μm), i=0,018 A/cm ² , 30 min	3,54	4,57	4,61	4,65	4,65	4,58	4,58	4,52
4	ECZ-Al, NaX (90-160 μm), i=0,003 A/cm ² , 30 min	3,54	4,10	4,09	4,13	4,21	4,15	4,18	4,09
5	ECZ-Zn, NaX (90-160 μm), i=0,009 A/cm ² , 10 min	3,54	4,19	4,16	4,46	/	/	/	/
б	ECZ-Fe, NaX (90-160 μm), i=0,018 A/cm ² , 20 min	3,54	4,17	4,16	4,25	4,35	4,51	/	/
7	ECZ-Zn, NaX (160-600 μm), i=0,003 A/cm ² , 20 min	3,54	3,92	4,08	4,15	4,08	4,16	/	/
8	ECZ-Fe, NaX (160-600 μm), i=0,009 A/cm ² , 30 min	3,54	3,91	3,83	4,07	4,08	4,19	4,28	4,32
9	ECZ-Al, NaX (160-600 μm), i=0,018 A/cm ² , 10 min	3,54	3,90	3,95	3,85	/	/	/	/

Tablica 3.2 Rezultati određivanja električne vodljivosti

Tablica 3.3 Rezultati određivanja temperature

		Temperatura tijekom vremena, °C							
		0	2	5	10	15	20	25	30
1	ECZ-Fe, NaX (< 90 μm) , i=0,003 A/cm ² , 10 min	23,7	23,8	24,1	24,2	/	/	/	/
2	ECZ-Al, NaX (< 90 μm), i=0,009 A/cm ² , 20 min	24,9	25,2	25,6	26,40	27,0	27,6	/	/
3	ECZ-Zn, NaX (< 90 μm), i=0,018 A/cm ² , 30 min	23,7	25,0	26,7	28,9	30,8	32,8	34,4	35,7
4	ECZ-Al, NaX (90-160 μm), i=0,003 A/cm ² , 30 min	24,6	24,8	24,9	25,1	25,3	25,5	25,7	25,8
5	ECZ-Zn, NaX (90-160 μm), i=0,009 A/cm ² , 10 min	25,2	25,7	26,2	27,0	/	/	/	/
б	ECZ-Fe, NaX (90-160 μm), i=0,018 A/cm ² , 20 min	25,0	25,4	25,7	26,2	26,7	27,1	/	/
7	ECZ-Zn, NaX (160-600 μm), i=0,003 A/cm ² , 20 min	25,3	25,4	25,6	25,8	25,9	26,0	/	/
8	ECZ-Fe, NaX (160-600 μm), i=0,009 A/cm ² , 30 min	24,1	24,2	24,4	24,7	24,9	25,1	25,3	25,5
9	ECZ-Al, NaX (160-600 μm), i=0,018 A/cm ² , 10 min	23,7	24,9	26,3	28,5	/	/	/	/

Tablica 3.4 Rezultati određivanja KPK početnog uzorka simulirane procjedne vode te uzoraka nakon ECZ

		KPK (mg O ₂ L ⁻¹)	% uklanjanja
1	ECZ-Fe, NaX (< 90 μm) , i=0,003 A/cm ² , 10 min	9432,60	9,54
2	ECZ-Al, NaX (< 90 μm), i=0,009 A/cm ² , 20 min	9711,20	6,87
3	ECZ-Zn, NaX (< 90 μm), i=0,018 A/cm ² , 30 min	7999,80	23,28
4	ECZ-Al, NaX (90-160 μm), i=0,003 A/cm ² , 30 min	7522,20	27,86
5	ECZ-Zn, NaX (90-160 μm), i=0,009 A/cm ² , 10 min	9432,60	9,54
6	ECZ-Fe, NaX (90-160 μm), i=0,018 A/cm ² , 20 min	9392,80	9,92
7	ECZ-Zn, NaX (160-600 μm), i=0,003 A/cm ² , 20 min	8159,00	21,76
8	ECZ-Fe, NaX (160-600 μm), i=0,009 A/cm ² , 30 min	7960,00	23,66
9	ECZ-Al, NaX (160-600 μm), i=0,018 A/cm ² , 10 min	6766,00	35,11

Tablica 3.5 Rezultati određivanja mutnoće

		NTU	% uklanjanja
1	ECZ-Fe, NaX (< 90 μm), i=0,003 A/cm ² , 10 min	66,20	83,32
2	ECZ-Al, NaX (< 90 μm), i=0,009 A/cm ² , 20 min	21,50	94,58
3	ECZ-Zn, NaX (< 90 μm), i=0,018 A/cm ² , 30 min	81,50	79,47
4	ECZ-Al, NaX (90-160 μm), i=0,003 A/cm ² , 30 min	37,30	90,6
5	ECZ-Zn, NaX (90-160 μm), i=0,009 A/cm ² , 10 min	25,10	93,68
6	ECZ-Fe, NaX (90-160 μm), i=0,018 A/cm ² , 20 min	53,80	86,45
7	ECZ-Zn, NaX (160-600 μm), i=0,003 A/cm ² , 20 min	35,00	91,18
8	ECZ-Fe, NaX (160-600 μm), i=0,009 A/cm ² , 30 min	39,70	90,0
9	ECZ-Al, NaX (160-600 μm), i=0,018 A/cm ² , 10 min	37,10	90,65

		Masa prazne posudice (g)	Masa nakon sušenja (g)	TS (g L- ¹)
	Početni	78,6950	78,7983	10,33
1	ECZ-Fe, NaX (< 90 μm) , i=0,003 A/cm ² , 10 min	105,5386	105,6137	7,51
2	ECZ-Al, NaX (< 90 μm), i=0,009 A/cm ² , 20 min	76,4115	76,5018	9,03
3	ECZ-Zn, NaX (< 90 μm), i=0,018 A/cm ² , 30 min	68,1100	68,2054	9,54
4	ECZ-Al, NaX (90-160 μm), i=0,003 A/cm ² , 30 min	74,5956	74,6722	7,66
5	ECZ-Zn, NaX (90-160 μm), i=0,009 A/cm ² , 10 min	78,7204	78,8017	8,13
б	ECZ-Fe, NaX (90-160 μm), i=0,018 A/cm ² , 20 min	74,5871	74,6780	9,09
7	ECZ-Zn, NaX (160-600 μm), i=0,003 A/cm ² , 20 min	78,7236	78,7986	7,5
8	ECZ-Fe, NaX (160-600 μm), i=0,009 A/cm ² , 30 min	106,3871	106,4778	9,07
9	ECZ-Al, NaX (160-600 µm), i=0,018 A/cm ² , 10 min	105,5064	105,5914	8,5

Tablica 3.6 Rezultati određivanja TS uzoraka prije i nakon ECZ

Tablica 3.7 Rezultati određivanja visine stupca suspenzije nakon ECZ

		Visina stupca tijekom vremena,cm						
	Vrijeme,min	0	2	5	10	15	20	30
1	ECZ-Fe, NaX (< 90 μm) , i=0,003 A/cm ² , 10 min	18,85	18,85	18,85	18,85	18,90	18,90	18,90
2	ECZ-Al, NaX (< 90 μm), i=0,009 A/cm ² , 20 min	18,00	18,00	18,00	18,00	18,00	18,00	18,00
3	ECZ-Zn, NaX (< 90 μm), i=0,018 A/cm ² , 30 min	17,70	17,70	17,70	16,95	17,00	17,00	17,00
4	ECZ-Al, NaX (90-160 μm), i=0,003 A/cm ² , 30 min	17,70	17,70	17,70	17,70	17,70	17,70	17,70
5	ECZ-Zn, NaX (90-160 μm), i=0,009 A/cm ² , 10 min	18,00	18,00	18,00	18,00	18,00	18,00	18,00
6	ECZ-Fe, NaX (90-160 μm), i=0,018 A/cm ² , 20 min	18,00	18,00	18,00	18,00	18,00	18,00	18,00
7	ECZ-Zn, NaX (160-600 μm), i=0,003 A/cm ² , 20 min	18,00	18,00	18,00	18,00	18,00	18,00	18,00
8	ECZ-Fe, NaX (160-600 μm), i=0,009 A/cm ² , 30 min	17,70	17,70	17,70	17,70	17,70	17,70	17,70
9	ECZ-Al, NaX (160-600 μm), i=0,018 A/cm ² , 10 min	17,20	17,20	17,20	17,20	17,20	17,20	17,20

Tablica 3.8 Rezultati određivanja mase taloga uzoraka nakon EC

		Mase filter papira (g)	Filter papir + talog (g)	Masa taloga (g)	Masa taloga (g L ⁻¹)
1	ECZ-Fe, NaX (< 90 μm) , i=0,003 A/cm ² , 10 min	2,1425	7,8772	5,7347	14,3368
2	ECZ-Al, NaX (< 90 μm), i=0,009 A/cm ² , 20 min	2,3550	8,1621	5,8071	14,5178
3	ECZ-Zn, NaX (< 90 μm), i=0,018 A/cm ² , 30 min	2,1768	8,2515	6,0747	15,1868
4	ECZ-Al, NaX (90-160 μm), i=0,003 A/cm ² , 30 min	2,2986	8,6430	6,3444	15,8610
5	ECZ-Zn, NaX (90-160 μm), i=0,009 A/cm ² , 10 min	2,3976	7,4860	5,0884	12,7210
6	ECZ-Fe, NaX (90-160 μm), i=0,018 A/cm ² , 20 min	2,3498	7,7515	5,4017	13,5043
7	ECZ-Zn, NaX (160-600 μm), i=0,003 A/cm ² , 20 min	2,2466	8,2312	5,9846	14,9615
8	ECZ-Fe, NaX (160-600 μm), i=0,009 A/cm ² , 30 min	2,2948	8,7595	6,4647	16,1618
9	ECZ-Al, NaX (160-600 μm), i=0,018 A/cm ² , 10 min	2,2555	8,8856	6,6301	16,5753

	ANODA	Masa prije	Masa nakon	Razlika
1	ECZ-Fe, NaX (< 90 μm) , i=0,003 A/cm ² , 10 min	64,9714	64,7968	0,1746
2	ECZ-Al, NaX (< 90 μm), i=0,009 A/cm ² , 20 min	58,5736	58,5035	0,0701
3	ECZ-Zn, NaX (< 90 μm), i=0,018 A/cm ² , 30 min	193,7007	193,0539	0,6468
4	ECZ-Al, NaX (90-160 μm), i=0,003 A/cm ² , 30 min	45,7410	45,7050	0,0360
5	ECZ-Zn, NaX (90-160 μm), i=0,009 A/cm ² , 10 min	212,8220	212,7373	0,0847
6	ECZ-Fe, NaX (90-160 μm), i=0,018 A/cm ² , 20 min	64,8462	64,7411	0,1051
7	ECZ-Zn, NaX (160-600 μm), i=0,003 A/cm ² , 20 min	192,1164	192,0577	0,0587
8	ECZ-Fe, NaX (160-600 μm), i=0,009 A/cm ² , 30 min	83,4302	83,3323	0,0979
9	ECZ-Al, NaX (160-600 μm), i=0,018 A/cm ² , 10 min	44,5384	44,4875	0,0509
	KATODA	Masa prije	Masa nakon	Razlika
1	KATODA ECZ-Fe, NaX (< 90 μm) , i=0,003 A/cm ² , 10 min	Masa prije 64,9496	Masa nakon 64,9449	Razlika 0,0047
1	KATODA ECZ-Fe, NaX (< 90 μm),	Masa prije 64,9496 51,7511	Masa nakon 64,9449 51,7205	Razlika 0,0047 0,0306
1 2 3	KATODA ECZ-Fe, NaX (< 90 μm),	Masa prije 64,9496 51,7511 183,5542	Masa nakon 64,9449 51,7205 183,5529	Razlika 0,0047 0,0306 0,0013
1 2 3 4	KATODA ECZ-Fe, NaX (< 90 μm),	Masa prije 64,9496 51,7511 183,5542 44,1863	Masa nakon 64,9449 51,7205 183,5529 44,1806	Razlika 0,0047 0,0306 0,0013 0,0057
1 2 3 4 5	KATODA ECZ-Fe, NaX (< 90 μm),	Masa prije 64,9496 51,7511 183,5542 44,1863 205,6656	Masa nakon 64,9449 51,7205 183,5529 44,1806 205,6634	Razlika 0,0047 0,0306 0,0013 0,0057 0,0022
1 2 3 4 5 6	KATODA ECZ-Fe, NaX (< 90 μm),	Masa prije 64,9496 51,7511 183,5542 44,1863 205,6656 64,5986	Masa nakon 64,9449 51,7205 183,5529 44,1806 205,6634 64,5952	Razlika 0,0047 0,0306 0,0013 0,0057 0,0022 0,0034
1 2 3 4 5 6 7	KATODA ECZ-Fe, NaX (< 90 μm),	Masa prije 64,9496 51,7511 183,5542 44,1863 205,6656 64,5986 182,9708	Masa nakon 64,9449 51,7205 183,5529 44,1806 205,6634 64,5952 182,9602	Razlika 0,0047 0,0306 0,0013 0,0057 0,0022 0,0034 0,0106
1 2 3 4 5 6 7 8	KATODA ECZ-Fe, NaX (< 90 μm),	Masa prije 64,9496 51,7511 183,5542 44,1863 205,6656 64,5986 182,9708 82,3441	Masa nakon 64,9449 51,7205 183,5529 44,1806 205,6634 64,5952 182,9602 82,3418	Razlika 0,0047 0,0306 0,0013 0,0057 0,0022 0,0034 0,0106 0,0023

Tablica 3.9 Podaci o masama elektroda prije i nakon postupka

4. RASPRAVA

4.1. Analiza rezultata karakterizacije uzorka procjedne vode iz kompostiranja

U tablici 4.1 uspoređene su karakteristike uzorka s maksimalnim dopuštenim koncentracijama (MDK) pokazatelja kakvoće otpadne vode propisane Pravilnikom o graničnim vrijednostima emisija otpadnih voda NN 26/20.²⁹

Tablica 4.1 Usporedba vrijednosti pokazatelja kompostne otpadne vode s MDK vrijednosti pokazatelja kakvoće otpadne vode propisane Pravilnikom

Parametri	Kompostna procjedna voda Površinske vode		Sustav javne odvodnje			
pН	4,03	6,5-9,5	6,5 – 9,5			
Električna vodljivost, mS/cm	3,54	-	-			
Mutnoća, NTU	397	-	-			
KPK, mg O ₂ /L	10427,6	125	700			
TS, mg/L	10330	35*	-			
*- uspoređuju se vrijednosti za ukupne suspendirane tvari (TSS) budući da vrijednosti za ukupni isparni ostatak (TS) nisu propisane Pravilnikom						

Iz prikazanih rezultata vidljivo je se pH vrijednost (pH=4,03) nalazi izvan granične vrijednosti za ispuštanje u površinske vode i u javnu kanalizaciju (pH=6,5-9,5). Električna vodljivost koja iznosi 3,54 mS/cm i mutnoća od 397 NTU ukazuju na prisutnost soli, aniona i kationa kao i na onečišćenje uzorka organskom tvari. Iako hrvatskom regulativom nisu propisane granične vrijednosti mutnoće vode, voda visoke mutnoće će uslijed ispuštanja u prirodno vodno tijelo negativno utjecati na sadržaj

otopljenog kisika i na proces fotosinteze. Vrijednost kemijske potrošnje kisika (KPK=10427,6 mg O₂/L) znatno prelazi granice propisane hrvatskom regulativom (125/700 mg O₂/L) i kao takva ukazuje na prisutnost biorazgradivih i anorganskih tvari osjetljivih na oksidaciju s dikromatom. Budući da vrijednosti za TS nisu propisane Pravilnikom, vrijednost TS je uspoređena sa TSS. Iznimno visoka vrijednost isparnog ostatka (TS=10330 mg/L) u odnosu na graničnu vrijednost TSS propisanu hrvatskom regulativom (35 mg/L) ukazuje na prisutnost suspendiranih, otopljenih i taložnih tvari u kompostnoj otpadnoj vodi.

4.2. Analiza rezultata parametara praćenih prije, tijekom i nakon provedbe integriranog procesa elektrokoagulacije i obrade na zeolitu

4.2.1. Analiza rezultata pH vrijednosti

Na slikama 4.1, 4.2 i 4.3 prikazani su rezultati praćenja pH vrijednosti izmjerene tijekom procesa ECZ za različite vrste materijala elektroda i za različite vrijednosti gustoće struja, s dodatkom sintetskog zeolita granulacija uz tri veličine čestica (< 90 μ m, 90-160 μ m, 160-600 μ m).

Slika 4.1 Grafički prikaz promjene pH vrijednosti tijekom procesa ECZ za različite vrste materijala elektroda uz dodatak sintetskog zeolita reda veličine čestica < 90 μm

Slika 4.2 Grafički prikaz promjene pH vrijednosti tijekom procesa ECZ za različite vrste materijala elektroda uz dodatak sintetskog zeolita reda veličine čestica 90-160 μm

Slika 4.3 Grafički prikaz promjene pH vrijednosti tijekom procesa ECZ za različite vrste materijala elektroda uz dodatak sintetskog zeolita reda veličine čestica 160-600 μm

Početna pH vrijednost otopine iznosila je 4,03, a nakon dodatka zeolita pH vrijednost je porasla s početne pH=4,03 na vrijednost pH=4,5-5,22. Na slici 4.1 vidljiv je najveći porast sa vrijednosti pH=4,03 na vrijednost pH=8,56, kod najveće gustoće struje i na elektrodi od cinka. Obzirom na veličinu čestica NaX, vidljivo je da je veći porast pH kod manje veličine čestica.

Porast pH vrijednosti za vrijeme procesa ECZ posljedica je reakcije hidrolize vode pri čemu dolazi do nastajanja vodika i hidroksidnih iona i vezanja slobodnog H⁺ u zeolit, prema reakciji:

$$6 H_2 O(l) + 6 e \to 3 H_2(g) + 3 OH^-$$
(4-1)

Konačna vrijednost pH=8,56 koja se nalazi u intervalu graničnih vrijednosti propisanih hrvatskom regulativom (pH=6,5-9,5) postignuta je upravo pri najvećoj gustoći struje (i=0,018 A/m²).

4.2.2. Analiza rezultata električne vodljivosti

Na slikama 4.4, 4.5 i 4.6 prikazani su rezultati praćenja električne vodljivosti izmjerene tijekom procesa ECZ za različite vrste materijala elektroda i za različite vrijednosti gustoće struja, s dodatkom sintetskog zeolita granulacija uz 3 veličine čestica (< 90 μ m, 90-160 μ m, 160-600 μ m).

Slika 4.4 Grafički prikaz promjene električne vodljivosti tijekom procesa ECZ za različite vrste materijala elektroda uz dodatak sintetskog zeolita reda veličine čestica < 90 μm

Slika 4.5 Grafički prikaz promjene električne vodljivosti tijekom procesa ECZ za različite vrste materijala elektroda uz dodatak sintetskog zeolita reda veličine čestica 90-160 μm

Slika 4.6 Grafički prikaz promjene električne vodljivosti tijekom procesa ECZ za različite vrste materijala elektroda uz dodatak sintetskog zeolita reda veličine čestica 160-600 μm

Na početku dolazi do blagog porasta električne vodljivosti zbog dodatka zeolita i zbog dodatka elektrolita. Kod slike 4.4 električna vodljivost oscilira s blagim trendom pada što se može pripisati vezanju štetnih tvari na flokule.

Na slici 4.5, kod najmanje gustoće struje i Al elektrode, električna vodljivost blago oscilira bez izraženog rasta ili pada, a kod ostalih krivulja je vidljiv trend rasta.

Na slici 4.6, kod najveće gustoće struje i Al elektrode, električna vodljivost blago pada, dok je na ostalim krivuljama vidljiv blagi porast električne vodljivosti.

Obzirom na veličinu čestica NaX, vidljivo je da je veći porast električne vodljivosti kod manje veličine čestica.

4.2.3. Analiza rezultata temperature

Na slikama 4.7, 4.8 i 4.9 prikazani su rezultati praćenja temperature izmjerene tijekom procesa ECZ za različite vrste materijala elektroda i za različite vrijednosti gustoće struja, s dodatkom sintetskog zeolita granulacija uz 3 veličine čestica (< 90 μ m, 90-160 μ m, 160-600 μ m).

Slika 4.7 Grafički prikaz promjene temperature tijekom procesa ECZ za različite vrste materijala elektroda uz dodatak sintetskog zeolita reda veličine čestica < 90

μm

Slika 4.8 Grafički prikaz promjene temperature tijekom procesa ECZ za različite vrste materijala elektroda uz dodatak sintetskog zeolita reda veličine čestica 90-160

Slika 4.9 Grafički prikaz promjene temperature tijekom procesa ECZ za različite vrste materijala elektroda uz dodatak sintetskog zeolita reda veličine čestica 160-600 μm

Na slici 4.7 vidljiv je najveći porast temperature kod najveće gustoće struje i Zn elektrode. Kod drugih krivulja trend rasta je blag, ali primjetan.

Na slikama 4.8 i 4.9 također su vidljivi porasti temperature kao i na slici 4.7. Dakle, uočava se porast temperature kod svih eksperimenata, a posebice kod eksperimenata 3,6 i 9 gdje je najveća gustoća struje, a konačne temperature iznose i do 37,5 °C. Razlog visokim temperaturama kod navedenih otopina može biti povezan s visokom gustoćom struje kao i s vrijednosti el. vodljivosti. Pri većoj gustoći struje veća je potrošnja elektroda te dolazi do porasta temperature. Ovaj porast temperature se u praksi treba kontrolirati jer ispuštanje otpadne vode povišene temperature u vodna tijela može uzrokovati termalno onečišćenje.

4.2.4. Analiza rezultata kemijske potrošnje kisika (KPK)

Na slikama 4.10 i 4.11 prikazani su rezultati praćenja kemijske potrošnje kisika za uzorak prije i nakon provedbe procesa ECZ za sve otopine, za različite vrste materijala elektroda i za različite vrijednosti gustoće struja, s dodatkom sintetskog zeolita granulacija uz 3 veličine čestica (< 90 μ m, 90-160 μ m, 160-600 μ m).

Slika 4.10 Grafički prikaz kemijske potrošnje kisika nakon provedbe eksperimenta; Napomena: Brojevi označavaju eksperimente čiji uvjeti provedbe su opisani u tablicama 2.1 i 2.2 materijalom elektrode, veličinom čestica, gustoćom struje i vremenom kontakta

Slika 4.11 Grafički prikaz efikasnosti uklanjanja KPK za sve eksperimente nakon procesa ECZ, za različite vrste materijala elektroda, gustoće struje uz dodatak sintetskog zeolita različitih veličina čestica

Kod najmanje veličine čestice (eksperimenti 1, 2 i 3) uklanjanje KPK se kreće od 6,87 do 23 % i najbolje je pri uvjetima najveće gustoće struje i cink elektrode.

Kod srednje veličine čestica (eksperimenti 4, 5 i 6) uklanjanje KPK se kreće od 9,54 do 22,9 % i najbolje je pri uvjetima najmanje gustoće struje i Al elektrode.

Kod najveće veličine čestica je izgleda najveće uklanjanje i najbolji rezultati su dobiveni za eksperiment 9 pri uvjetima najveće gustoće struje i Al elektrode.

Obzirom na veličinu čestica NaX, vidljivo je da je bolje uklanjanje KPK kod veće veličine čestica.

Da se zadovolji Pravilnik treba primijeniti dodatne procese obrade. Očito je polazna otopina jako složenog sastava, opterećena s velikom količinom teško razgradljive organske tvari koja se nije značajno razgradila u jednostupanjskom postupku hibridnog ECZ. Rješenja su u dvostupanjskim ili višestupanjskim procesima ili pak primjeni predtretmana primjenom naprednih oksidacijskih procesa i slično.

4.2.5. Analiza rezultata mutnoće

Na slici 4.12 prikazani su rezultati mutnoće za uzorak prije i nakon provedbe procesa ECZ za sve otopine, za različite vrste materijala elektroda i za različite vrijednosti gustoće struja, s dodatkom sintetskog zeolita granulacija uz 3 veličine čestica (< 90 μ m, 90-160 μ m, 160-600 μ m). Temeljem rezultata mutnoće u početnoj i konačnim otopinama izračunate su efikasnosti uklanjanja mutnoće, a rezultati su prikazani na slici 4.13.

Slika 4.12 Grafički prikaz mutnoće svih otopina tijekom ECZ procesa

Slika 4.13 Grafički prikaz efikasnosti uklanjanja mutnoće nakon provedbe procesa ECZ za sve otopine

Rezultati uklanjanja mutnoće kreću se od 79,47 % do 94,58 %. Najveći stupanj uklanjanja mutnoće ostvaren je kod eksperimenta 2, a najmanji kod eksperimenta 3. Kod veće veličine čestica, uklanjanje mutnoće je skoro neovisno o vrsti elektrode, gustoći struje te vremenu kontakta. Kod ostalih veličina čestica vidljive su oscilacije ovisno o uvjetima pri kojima je eksperiment proveden pa je vidljivo da je uklanjanje najbolje kod srednje gustoće struje i Al elektrode.

4.2.6. Analiza rezultata ukupnog isparnog ostatka

Rezultati ukupnog isparnog ostatka (TS) nakon procesa ECZ grafički su prikazani na slici 4.14.

ECZ-Fe, NaX (< 90 μm), i=0.003 A/cm2, 10 min
ECZ-Al, NaX (< 90 μm), i=0.009 A/cm2, 20 min
ECZ-Zn, NaX (< 90 μm), i=0.018 A/cm2, 30 min
ECZ-Al, NaX (90-160 μm), i=0.003 A/cm2, 30 min
ECZ-Fe, NaX (90-160 μm), i=0.009 A/cm2, 10 min
ECZ-Fe, NaX (90-160 μm), i=0.018 A/cm2, 20 min
ECZ-Zn, NaX (160-600 μm), i=0.009 A/cm2, 30 min
ECZ-Fe, NaX (160-600 μm), i=0.018 A/cm2, 10 min

Slika 4.14 Grafički prikaz ukupnog isparnog ostatka nakon procesa ECZ

TS je nakon provedbe eksperimenta općenito manji.

Kod najmanje veličine čestica (eksperimenti 1,2 i 3) TS se kreće od 7,51 do 9,54 g/L, a najveći je kod najveće gustoće struje i cink elektrode. Kod srednje veličine čestica (eksperimenti 4, 5 i 6) TS se kreće od 7,66 do 9,09 g/L, a najveći je kod najveće gustoće struje i Fe elektrode. Kod najveće veličine čestica najveći TS je za eksperiment 8, kod srednje gustoće struje i Fe elektrode.

4.2.7. Analiza testa taloženja suspenzije i mase taloga

Rezultati testa taloženja nakon procesa ECZ grafički su prikazani na slici 4.15.

Slika 4.15 Grafički prikaz testa taloženja nakon procesa ECZ

Vidljivo je da je taloženje zapravo nikakvo i u konačnoj primjeni to može biti problem budući da se nije postiglo značajno odvajanje nastalog taloga od otopine. Razlog tome je složenost sastava polazne otpadne vode koja se zbog toga nije mogla efikasno obraditi.

4.2.8. Analiza rezultata masa elektroda

U tablici 3.9 prikazane su vrijednosti masa elektroda prije i nakon provedbe procesa. Osim očekivanog smanjenja masa žrtvovanih anoda dolazi i do smanjenja masa katoda. Uzrok smanjenju mase katode od Al je reakcija koja se odvija na katodi:

$$2Al(s) + 6 H_2O + 2OH^- \rightarrow 2 Al(OH)_4 + 3H_2$$

$$(4-2)$$

Do ove reakcije dolazi zbog napada OH⁻ iona, nastalih u reakciji izlučivanja vodika te dolazi do otapanja katode. Razlog otapanja katode kod Zn i Fe katode se može pripisati utjecaju zeolita i njegovog abrazivnog djelovanja.

Rezultati utroška masa elektroda tijekom ECZ grafički su prikazani na slici 4.16, 4.17 i 4.18.

Slika 4.16 Grafički prikaz utroška mase katode i anode nakon procesa ECZ (1-3)

Slika 4.17 Grafički prikaz utroška mase katode i anode nakon procesa ECZ (4-6)

Slika 4.18 Grafički prikaz utroška mase katode i anode nakon procesa ECZ (7-9)

Vidljivo je da su veće potrošnje anode, što je i očekivano, no uočene su i potrošnje katode, ovisno o eksperimentalnim uvjetima. Nešto veće potrošnje elektroda su dobivene u eksperimentima sa manjom veličinom čestica. Kod najmanje veličine čestica (eksperiment 1, 2 i 3) najveće smanjenje mase uočeno je kod Zn anode gdje je također i najveće uklanjanje KPK. Kod srednje veličine čestica (eksperiment 4, 5 i 6) najveće smanjenje mase je kod Fe katode, a kod najveće veličine čestica kod Fe anode. Usporedbom slike 4.16 i 4.7 uočavamo da je veće otapanje elektrode što je veći skok temperature.

4.2.9. Analiza operativnih troškova

Troškovi elektroda procijenjeni su prema Faradayevom zakonu i mjerenjem potrošnje elektroda prije i nakon elektrokoagulacije. Troškovi električne energije (kW/m³) i elektrode (kg/m³) izračunati su iz jednadžbi (1-14) i (1-15).

Celektroda iz potrošnje tijekom eksperimenta izračunava se prema sljedećoj jednadžbi 30:

$$C_{elektroda} = \frac{m}{V} \tag{4-3}$$

U tablicama 4.2 i 4.3 prikazane su vrijednosti operativnih troškova.

Tablica 4.2 Vrijednosti operativnih troškova procesa izračunati preko Faradayeva zakona

				Izraču Faradaye	n preko vog zakona
Eksp. br	Opis eksperimenta	U/V	I/A	C _{energija} , kWh/m ³	$C_{elektroda}, kg/m^3$
1	ECZ-Fe, NaX (< 90 μm) , i=0,003 A/cm ² , 10 min	3,08	0,045	3,960	0,022
2	ECZ-Al, NaX (< 90 μm), i=0,009 A/cm ² , 20 min	8,05	0,435	200,100	0,139
3	ECZ-Zn, NaX (< 90 μm), i=0,018 A/cm ² , 30 min	15,80	0,970	1313,657	1,690
4	ECZ-Al, NaX (90-160 μm), i=0,003 A/cm ² , 30 min	4,21	0,108	38,973	0,052
5	ECZ-Zn, NaX (90-160 μm), i=0,009 A/cm ² , 10 min	8,41	0,534	128,313	0,310
6	ECZ-Fe, NaX (90-160 μm), i=0,018 A/cm ² , 20 min	10,41	0,270	160,611	0,268
7	ECZ-Zn, NaX (160-600 μm), i=0,003 A/cm ² , 20 min	4,36	0,160	39,863	0,186
8	ECZ-Fe, NaX (160-600 μm), i=0,009 A/cm ² , 30 min	6,38	0,189	103,356	0,281
9	ECZ-Al, NaX (160-600 μm), i=0,018 A/cm ² , 10 min	17,00	0,696	338,057	0,111

Tablica 4.3 Vrijednosti operativnih troškova procesa izračunati preko smanjenja masa elektroda

		Izračun preko smanjenja mase elektroda		
Eksp. br	Opis eksperimenta	$C_{anoda}, kg/m^3$	$C_{katoda}, kg/m^3$	$C_{anoda+katoda}, kg/m^3$
1	ECZ-Fe, NaX (< 90 μm) , i=0,003 A/cm ² , 10 min	0,499	0,013	0,512
2	ECZ-Al, NaX (< 90 μm), i=0,009 A/cm ² , 20 min	0,200	0,087	0,288
3	ECZ-Zn, NaX (< 90 μm), i=0,018 A/cm ² , 30 min	1,848	0,004	1,852
4	ECZ-Al, NaX (90-160 μm), i=0,003 A/cm ² , 30 min	0,103	0,016	0,119
5	ECZ-Zn, NaX (90-160 μm), i=0,009 A/cm ² , 10 min	0,242	0,006	0,248
6	ECZ-Fe, NaX (90-160 μm), i=0,018 A/cm ² , 20 min	0,010	0,010	0,310
7	ECZ-Zn, NaX (160-600 μm), i=0,003 A/cm ² , 20 min	0,168	0,030	0,198
8	ECZ-Fe, NaX (160-600 μm), i=0,009 A/cm ² , 30 min	0,280	0,007	0,286
9	ECZ-Al, NaX (160-600 μm), i=0,018 A/cm ² , 10 min	0,145	0,005	0,150

Na temelju rezultata prikazanih u tablici 4.2 vidljivo je da je u svrhu odvijanja procesa i postizanja odgovarajuće vrijednosti struje najveći napon mora biti primijenjen u eksperimentu 9 (U = 17 V), a najmanji napon je zabilježen u eksperimentu 1 (U = 3,1 V). Utrošak električne energije najveći je kod eksperimenta 3 sa Zn elektrodom gdje iznosi 1313,66 kWh/m³, a najmanji utrošak električne energije je u eksperimentu 1 (3,96 kWh/m³).

5. ZAKLJUČAK

- Procjedna voda nakon kompostiranja anaerobnim postupkom ima pH vrijednost pH=4,03, električnu vodljivost koja iznosi 3,54 mS/cm i mutnoću od 397 NTU, kemijsku potrošnju kisika KPK=10427,6 mg O₂/ te isparni ostatak u iznosu TS=10330.
- Tijekom hibridnog procesa EC sa sintetskim zeolitom različitih veličina čestica dolazi do porasta pH vrijednosti. Porast pH vrijednosti za vrijeme procesa ECZ posljedica je reakcije hidrolize vode pri čemu dolazi do nastajanja vodika i hidroksidnih iona, prema reakciji:

 $6 H_2 O(l) + 6 e \rightarrow 3 H_2(g) + 3 OH^-$

Porast pH izraženiji je kod manje veličine čestica.

- Na početku hibridnog procesa dolazi do blagog porasta električne vodljivosti zbog dodatka zeolita i zbog dodatka elektrolita. Međutim, električna vodljivost oscilira s blagim trendom pada što se može pripisati vezanju štetnih tvari na flokule.
- 4. Uočava se porast temperature kod svih eksperimenata, a posebice kod eksperimenata 3, 6 i 9 gdje je najveća gustoća struje, a konačne temperature iznose i do 37,5 °C. Porast temperature se u praksi treba kontrolirati jer ispuštanje otpadne vode povišene temperature u vodna tijela može uzrokovati termalno onečišćenje.
- 5. Tijekom hibridnog procesa EC sa sintetskim zeolitom različitih veličina čestica efikasnost uklanjanja KPK se kreće od 7 % do 35 %, efikasnost uklanjanja mutnoće se kreće od 80 % do 95 %, a vrijednosti isparnog ostatka osciliraju u rasponu od 8 gL⁻¹ do 10 gL⁻¹.
- Test taloživosti pokazao je vrlo slabo odvajanje krute od tekuće faze, a što može utjecati negativno u praktičnoj primjeni.

- 7. Primjenom hibridnog procesa EC sa sintetskim zeolitom različitih veličina uočava se nešto veći porast pH, el. vodljivosti, temperature, potrošnje elektroda i uklanjanja mutnoće kod primjene manje veličine čestica, dok je uklanjanje KPK nešto bolje kod primjene EC sa sintetskim zeolitom veće veličine čestica.
- 8. Rezultati su pokazali da se procjedna voda nakon kompostiranja anaerobnim procesom može obraditi hibridnim postupkom elektrokoagulacije i sintetskog zeolita različite veličine čestica. Međutim, obzirom na vrlo visoke vrijednosti KPK polazne otopine, konačne vrijednosti ispitivanih parametara ne postižu vrijednosti propisane Pravilnikom te buduća ispitivanja treba usmjeriti na primjenu dvostupanjskih ili višestupanjskih procesa ili pak na primjenu predtretmana primjenom naprednih oksidacijskih procesa i slično.

6. LITERATURA

- A. Dura, J. C. Stephens, C. B. Breslin, Electrocoagulation for Water Treatment: the Removal of Pollutants using Aluminium Alloys, Stainless Steels and Iron Anodes, PhD thesis, National University of Ireland Maynooth, 2013., str. 9-26.
- N. V. Medvidović, L. Vrsalović, S. Svilović, A. Bobanović, Electrocoagulation vs. Integrate Electrocoagulation – Natural Zeolite for Treatment of Biowaste Compost Leachate – Wheter the Optimum Is Truly Optimal, Minerals 12 (2022) 442., doi: https://doi.org/10.3390/min12040442
- A. Z. Rodriguez, H. Wang, L. Hu, Y. Zhang, P. Xu, Treatment of Produced Water in the Permian Basin for Hydraulic Fracturing: Comparison of Different Coagulation Processes and Innovative Filter Media, Water 12 (2020) 1770, doi: 10.3390/w12030770
- 4. *M. Mouedhena, M. Feki, H.F. Ayedi,* Behavior of aluminium electrodes in electrocoagulation process, Journal of Hazardous Materials **150** (2008) 124-135.
- E. Bazrasafshan, K. A. Ownagh, A. H. Mahvi, Application of Electrocoagulation Process Using Iron and Aluminium Electrodes for Fluoride Removal from Aqueous Environment, E – Journal of Chemistry, 9 (2012) 2297-2308.
- M. Safwat, Treatment of real printing wastewater using electrocoagulation process with titanium and zinc electrodes, Journal of Water Process Engineering 34 (2020) 101137, doi: https://doi.org/10.1016/j.jwpe.2020.101137 (23.05.2022.)
- C. M. van Genuchten, T. Behrends, P. Kraal, S. L. S. Stipp, K. Dideriksen, Controls on the formation of Fe (II,III) (hydr)oxides by Fe(0) electrolysis, Electrochim. Acta 286 (2018), 323-338., doi: https://doi.org/10.1016/j.electacta.2018.08.031 (25.05.2022.)
- A. T. Al-Hinai, M. H. Al-Hinai, J. Dutta, Application of Eh-pH diagram for room temperature precipitation of zinc stannate microcubes ina n aqueous media, Materials research bulletin 49 (2013) 649-650. doi: https://doi.org/10.1016/j.materresbull.2013.10.011
- M. Fousová, V. Vaselova, Corrosion of 3D-printed AlSi9Cu3Fe alloy, Manufacturing Technology 19 (2019) 209-215., doi: 10.21062/ujep/240.2019/a/1213-2489/MT/19/1/29

- N. Vukojević Medvidović, Lead removal on natural zeolite clinoptilolite column process modelling, Doctoral theses, Faculty of Chemistry and Technology in Split, 2007.
- G. Lončar, I. Halkijević, H. Posavčić, I. Ban, Primjena elektrokoagulacijskog uređaja s ciljem smanjenja koncentracije amonijaka, Hrvatske vode 27 (2019) 129-142.
- 12. URL:

https://www.sigmaaldrich.com/HR/en/product/sigma/96096?gclid=Cj0KCQjwy 5maBhDdARIsAMxrkw0XghrZOQOwAg3s88Bg0HCv1FUeyp6TWO0ChNZg 9m-A2QSuzfM7gbwaAi9nEALw_wcB&gclsrc=aw.ds (19.05.2022.)

- P. Myllymäki, R. Lahti, H. Romar, U. Lassi, Removal of total organic carbon from peat solution by hybrid method – Electrocoagulation combined with adsorption, Journal of Water Process Engineering 24 (2018) 56-62., doi: https://doi.org/10.1016/j.jwpe.2018.05.008
- S. Elabbas, N. Adjeroud, L. Mandi, F. Berrekhis, Eggshell adsorption process coupled with electrocoagulation for improvement of chromium removal from tanning watewater, International Journal of Environmental Analytical Chemistry 102 (13) (2020) 1-13., doi: https://doi.org/10.1080/03067319.2020.1761963
- 15. I. L. Hernández, C. B. Díaz, G. R. Morales, B. Bilyeu, F. U. Núñez, A combined electrocoagulation-sorption processapplied to mixed industrial wastewater Journal of Hazardous Materials 144 (2007) 240-248., doi: https://doi.org/10.1016/j.jhazmat.2006.10.015
- 16. N. V. Marayanan, M. Ganesan, Use of adsorption using granular activated carbon for the enhancement of removal of chromium from synthetic wastewater by electrocoagulation, Journal of Hazardous Materials 161 (2009) 575-580., doi: https://doi.org/10.1016/j.jhazmat.2008.03.113
- Chang et al., Treatment of Reactive Black 5 by combined electrocoagulationgranular activated carbon adsorption-microwave regeneration process, Journal of Hazardous Materials 175 (2010) 850-857., doi: https://doi.org/10.1016/j.jhazmat.2009.10.088
- 18. Y. A. Ouaissa, M. Chabani, A. Amrane, A. Bensmaili, Integration of electrocoagulation and adsorption for the treatment of tannery wastewater-The case o fan Algerian factory, Rouiba, Procedia Engineering **33** (2012) 98-101., doi: https://doi.org/10.1016/j.proeng.2012.01.1181

- 19. *T. Kovačić, B. Andričić,* Kataliza, Sveučilište u Splitu, Kemijsko tehnološki fakultet, Split, 2010., 120-124.
- 20. D. Kallo, Applications of Natural Zeolite sin Water nad Wastewater Treatment, Reviews in Mineralogy and Geochemistry 45 (2001) 519-550., doi: https://doi.org/10.2138/rmg.2001.45.15 (21.05.2022.)
- URL : https://www.alibaba.com/product-detail/Granule-green-natural-zeolitefor-agriculture_60802715678.html (22.05.2022.)
- 22. *M. Król*, Natural vs. Synthetic Zeolites, Crystals **10** (2020) 622. doi: http://dx.doi.org/10.3390/cryst10070622 (23.05.2022.)
- 23. M. A. A. Hamid, H. A. Aziz, M. S. Yusoff, S. A. Rezan, Optimization and Analysis of Zeolite Augmented Electrocoagulation Process in the Reduction of High-Strength Ammonia in Saline Landfill Leachate, Water 12 (2020) 247, doi: 10.3390/w1201024710.3390/w12010247
- 24. M. A. A. Hamid, H. A. Aziz, M. S. Yusoff, S. A. Rezan, Clinoptilolite augmented electrocoagulation process for the reduction high-strength ammonia and color from stabilized landfill leachate, Water Environment Research 93 (2020) 1-12., doi: 10.1002/wer.1461 (25.05.2022.)
- 25. M. A. A. Hamid, H. A. Aziz, M. S. Yusoff, S. A. Rezan, A continuous clinoptilolite SBR-electrocoagulation process to remove concentrated ammonia color in landfill leachate, Environmental Technology & Innovation 23 (2021) 101575 doi: https://doi.org/10.1016/j.eti.2021.101575
- 26. M. Zolfaghari, S. Magdouli, R. Tanabene, S. Komtchou, Pragmatic strategy for the removal of ammonia from gold mine effluents using a combination of electro-coagulation and zeolite cation exchange processes: A staged approach, Journal of Water Process Engineering **37** (2020) 101512, doi: https://doi.org/10.1016/j.jwpe.2020.101512
- 27. A. Ziouvelou, A. G. Tekerkekopoulou, D. V. Vayenas, A hybrid system for groundwater denitrification using electrocoagulation and adsorption, Journal of Environmental Manangment 249, 109355 (2019), doi: https://doi.org/10.1016/j.jenvman.2019.109355
- 28. A. D. Eaton, L. S. Clesceri, E.W. Rice, A. E. Greenberg, M. A. H. Franson;
 (Eds.). Standard Methods for the Examination of Water and Wastewater, 21st
 ed; American Public Health Association (APHA); American Water Works

Association (AWWA); Water Environment Federation (WEF); Washington, DC, USA, 2005

- 29. Pravilnik o graničnim vrijednostima emisija otpadnih voda NN 26/20, https://narodne-novine.nn.hr/clanci/sluzbeni/2020_03_26_622.html (17.06.2022.)
- 30. C. J. Lin et al., Pilot-Scale Electrocoagulation with Bipolar Aluminium Electrodes for On-Site Domestic Greywater Reuse, Journal of Environmental Engineering 131 (2005) 491-495., doi: https://doi.org/10.1061/(ASCE)0733-9372(2005)131:3(491) (18.06.2022.)