Testiranje solarnih ćelija u laboratorijskim uvjetima

Tanocki, Karlo

Undergraduate thesis / Završni rad

2019

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of Split, Faculty of Chemistry and Technology / Sveučilište u Splitu, Kemijsko-tehnološki fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:167:466688

Rights / Prava: In copyright/Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2025-03-12

Repository / Repozitorij:

<u>Repository of the Faculty of chemistry and</u> technology - University of Split

SVEUČILIŠTE U SPLITU KEMIJSKO-TEHNOLOŠKI FAKULTET

TESTIRANJE SOLARNIH ĆELIJA U LABORATORIJSKIM UVJETIMA

ZAVRŠNI RAD

KARLO TANOCKI Matični broj: 47

Split, rujan 2019.

SVEUČILIŠTE U SPLITU KEMIJSKO-TEHNOLOŠKI FAKULTET PREDDIPLOMSKI STRUČNI STUDIJ ZAŠTITA I OPORABA MATERIJALA

TESTIRANJE SOLARNIH ĆELIJA U LABORATORIJSKIM UVJETIMA

ZAVRŠNI RAD

KARLO TANOCKI Matični broj: 47

Split, rujan 2019.

UNIVERSITY OF SPLIT FACULTY OF CHEMISTRY AND TECHNOLOGY UNDERGRADUATE PROFESSIONAL STUDY MATERIALS PROTECTION AND RECYCLING

TESTING OF SOLAR CELLS IN LABORATORY CONDITIONS

BACHELOR THESIS

KARLO TANOCKI Parent number: 47

Split, September 2019.

TEMELJNA DOKUMENTACIJSKA KARTICA

ZAVRŠNI RAD

Sveučilište u Splitu Kemijsko-tehnološki fakultet u Splitu Preddiplomski stručni studij: Zaštita i oporaba materijala

Znanstveno područje: tehničke znanosti Znanstveno polje: kemijsko inženjerstvo Tema rada je prihvaćena na 19. sjednici Fakultetskog vijeća Kemijsko tehnološkog fakulteta održanoj 23. studenog 2018. Mentor: Dr. sc. Mirko Marušić, viši predavač Pomoć pri izradi: Dr. sc. Tihomir Betti, izvanredni profesor

TESTIRANJE SOLARNIH ĆELIJA U LABORATORIJSKIM UVJETIMA

Karlo Tanocki, matični broj: 47

Sažetak:

U radu je proučen teorijski okvir za analizu solarnih ćelija, temeljen na fotoelektričnom učinku. Testiranje je obuhvatilo tri modula sastavljena od solarnih ćelija izrađenih od kristaličnog silicija, amorfnog silicija te organskog polimera. Izmjerene su strujno-naponske karakteristike solarnih modula te ovisnosti struje kratkog spoja i napona otvorenog kruga o intenzitetu zračenja. Analiza je pokazala da najbolje karakteristike za izradu solarnog modula posjeduje kristalični silicij. Usporedba modula načinjenog od ćelija s amorfnim silicijem i onih s organskim polimerom za izradu ćelija kazuje nam kako bi bolji izbor bio amorfni silicij.

Ključne riječi: fotoelektrični učinak, solarne ćelije, kristalični silicij, amorfni silicij, organski polimer

Rad sadrži: 33 stranice, 23 slike, 3 tablice, 16 literaturnih referenci

Jezik izvornika: hrvatski

Sastav Povjerenstva za obranu:

- 1. Dr. sc. Magdy Lučić Lavčević, izvanredni profesor predsjednik
- 2. Dr. sc. Miroslav Labor, izvanredni profesor član
- 3. Dr. sc. Mirko Marušić, viši predavač član mentor

Datum obrane: 27.09.2019.

Rad je u tiskanom i elektroničkom (pdf format) obliku pohranjen u Knjižnici Kemijsko-tehnološkog fakulteta u Splitu, Ruđera Boškovića 35.

BASIC DOCUMENTATION CARD

BACHELOR THESIS

University of Split Faculty of Chemistry and Technology Split Undergraduate professional study materials protection and recycling

Scientific area: Technical science
Scientific field: Chemical engineering
Thesis subject was approved by Faculty Council of Faculty of Chemistry and Technology, session no 19 date 23rd November, 2018.
Mentor: PhD, Mirko Marušić, senior lecturer
Technical assistance: PhD, Tihomir Betti, associate professor

TESTING OF SOLAR CELLS IN LABORATORY CONDITIONS

Karlo Tanocki, parent number 47

Abstract:

The theoretical framework for the analysis of solar cells, based on photoelectric effect, is studied in this thesis. The testing included three modules made of crystalline silicon, amorphous silicon and an organic polymer. The measurement included testing the current-voltage characteristics of photovoltaic modules and the dependence of short-circuit current and open-circuit voltage on the radiation intensity. The analysis has shown that crystalline silicon possesses the best characteristics for the production of a solar module, from the tested materials. Comparison of modules made of amorphous silicon and organic polymer tells us that amorphous silicone would be better choice.

Keywords: photoelectric effect, solar cells, crystalline silicon, amorphous silicon, organic polymer

Thesis contains: 33 pages, 23 figures, 3 tables, 16 references

Original in: Croatian

Defence committee:

- 1. Magdy Lučić Lavčević PhD, associate professor chair person
- 2. Miroslav Labor PhD, associate professor member
- 3. Mirko Marušić PhD, senior lecturer supervisor

Defence date: 27.09.2019.

Printed and electronic (pdf format) version of thesis is deposed in Library of Faculty of Chemistry and Technology in Split, Ruđera Boškovića 35.

Završni rad izrađen je u Zavodu za fiziku, Kemijsko-tehnološkog fakulteta u Splitu pod mentorstvom dr. sc. Mirka Marušića, višeg predavača, u razdoblju od studenog 2018. do rujna 2019. godine.

Zahvaljujem svom mentoru dr.sc. Mirku Marušiću na silnom strpljenju i velikoj pomoći prilikom izrade ovog rada.

Veliko hvala dr.sc. Tihomiru Bettiju na pomoći prilikom izrade praktičnog dijela ovoga rada.

Hvala mojim roditeljima, braći i sestri na ljubavi i potpori pruženoj tijekom studiranja.

Hvala mojoj djevojci na savjetima tijekom studiranja.

ZADATAK ZAVRŠNOG RADA

- Objasniti fizikalnu pozadinu fotoelektričnog učinka
- Opisati princip rada solarne ćelije
- Izmjeriti strujno-naponske karakteristike modula načinjenih od kristaličnog silicija, amorfnog silicija i organskog polimera
- Izmjeriti ovisnost struje kratkog spoja o intenzitetu zračenja za svaki modul
- Izmjeriti ovisnost napona otvorenog kruga o intenzitetu zračenja za svaki modul
- Koristiti dobivene rezultate za usporedbu modula

SAŽETAK

U radu je proučen teorijski okvir za analizu solarnih ćelija, temeljen na fotoelektričnom učinku. Testiranje je obuhvatilo tri modula sastavljenih od solarnih ćelija izrađenih od kristaličnog silicija, amorfnog silicija te organskog polimera. Izmjerene su strujnonaponske karakteristike solarnih modula te ovisnost struje kratkog spoja i napona otvorenog kruga o intenzitetu zračenja. Analiza je pokazala da najbolje karakteristike za izradu solarnog modula posjeduje kristalični silicij. Usporedba modula načinjenog od ćelija s amorfnim silicijem i onih s organskim polimerom za izradu ćelija kazuje nam kako bi bolji izbor bio amorfni silicij.

Ključne riječi: fotoelektrični učinak, solarne ćelije, kristalični silicij, amorfni silicij, organski polimer

SUMMARY

The theoretical framework for the analysis of solar cells, based on photoelectric effect, is studied in this thesis. The testing included three modules made of crystalline silicon, amorphous silicon and an organic polymer. The measurement included testing the current-voltage characteristics of photovoltaic modules and the dependence of short-circuit current and open-circuit voltage on the radiation intensity. The analysis has shown that crystalline silicon possesses the best characteristics for the production of a solar module, from the tested materials. Comparison of modules made of amorphous silicon and organic polymer tells us that amorphous silicone would be better choice.

Keywords: photoelectric effect, solar cells, crystalline silicon, amorphous silicon, organic polymer

SADRŽAJ

UVOD	1
1. OPĆI DIO	3
1.1. FOTOELEKTRIČNI UČINAK	4
1.1.1. Povijesni pregled	4
1.1.2. Einsteinovo tumačenje fotoelektričnog učinka	8
1.2. SOLARNA ĆELIJA	9
1.2.1. Princip rada solarne ćelije	10
1.2.2. Parametri solarne ćelije	12
1.3. MATERIJALI ZA IZRADU SOLARNIH ĆELIJA	13
1.3.1. Kristalični silicij	13
1.3.2. Amorfni silicij	14
1.3.3. Organski polimer	15
2. EKSPERIMENTALNI DIO	17
2.1. CILJ EKSPERIMENTA	
2.2. MJERNI INSTRUMENTI I MJERENI UZORCI	
2.3. MJERENJE	22
3. REZULTATI I RASPRAVA	23
4. ZAKLJUČAK:	
5. LITERATURA	

UVOD

Napretkom tehnologije i povećanjem ukupne ljudske populacije na Zemlji porasla je potreba čovječanstva za energijom. Početkom industrijalizacije u svijetu u 18. stoljeću, koja počinje izumom parnoga stroja Jamesa Watta, kreće eksponencijalan rast potrebe za energijom na Zemlji. Odgovor na te potrebe čovječanstvo je pronalazilo u klasičnim izvorima energije, ugljenu, nafti te zemnome plinu, poznatim i pod nazivom fosilna goriva. Činilo se da Zemljina kora ove izvore energije ima u zalihama koje će potrajati stotinama godina. Međutim, još veća potreba za energentima, do koje dolazi nakon druge i treće industrijske revolucije, probudila je svijest o konačnosti tih zaliha, ali i ekološkim problemima koji se vežu uz njihovu potrošnju. Direktna posljedica korištenja fosilnih goriva je porast količine CO_2 u atmosferi.

Porastom svijesti o štetnosti i konačnosti neobnovljivih izvora energije, rađaju se ideje o iskorištavanju energije iz obnovljivih izvora. U novije vrijeme, naglasak je na usavršavanju korištenja energije vjetra, Sunca, geotermalne energije, energije plime i oseke te energije dobivene iz biomase.

Među obnovljivim izvorima posebnu pažnju dobiva sunčeva energija koja je izvrstan izbor za ekološki prihvatljiv izvor energije. Zemlja dnevno prima otprilike 1.2 x 10⁵ TW sunčeve energije što je i više nego dovoljno da se zadovolje potrebe potrošnje. Jedna od najzanimljivijih metoda iskorištavanja sunčeve energije je izravna pretvorba sunčeve svjetlosti u električnu energiju pomoću fotoelektričnog učinka. Pretvorba je moguća uz korištenje solarne ćelije. Razvoj solarne ćelije počinje istraživanjima Becquerela 1839. godine, a četrdesetak godina kasnije napravljena je prva solarna ćelija od selena.^[1]

Cilj ovog rada je usporedba djelotvornosti odabranih solarnih modula načinjenih od solarnih ćelija prve, druge i treće generacije.

Rad je podijeljen u tri dijela. U prvom dijelu teorijski je obrađen fotoelektrični učinak te princip rada solarnih ćelija. Definirani su osnovni parametri i materijali za izradu solarnih ćelija. Drugi dio rada odnosi se na testiranje solarnih ćelija izgrađenih od kristaličnog silicija, amorfnog silicija i organskog polimera pomoću uređaja Keithley 2612A SMU. Opisan je spomenuti uređaj i sama izvedba mjerenja. Treći dio daje pregled rezultata testiranja te usporedbu karakteristika pojedinih solarnih modula.

<u>1. OPĆI DIO</u>

Krajem devetnaestog stoljeća teorije klasične fizike nisu mogle objasniti niz opaženih eksperimentalnih pojava od kojih je jedna i fotoelektrični učinak. ^[2] Početak dvadesetog stoljeća u razvoju fizike donio je ideju kvantiziranosti elektromagnetskog zračenja, koje je u klasičnoj fizici bilo shvaćano na drugi način. Tek će prihvaćanjem i upotrebom te ideje biti moguće objasniti eksperimentalne rezultate vezane za fotoelektrični učinak.

1.1. FOTOELEKTRIČNI UČINAK

Fotoelektrični učinak je pojava kod koje pod utjecajem elektromagnetskog zračenja elektroni izlaze s površine metala (slika 1.1).

Slika 1.1. Fotoelektrični učinak^[3]

1.1.1. Povijesni pregled

Fotoelektrični učinak je pronađen i proučavan u pokusima Heinricha R. Hertza (1887), Wilhelma Hallwachsa (1888), Josepha J. Thomsona (1899), Philippa Lenarda (1899), te Roberta A. Millikana (1916).^[4]

U svom pokusu (slika 1.2), koji se sastojao od radio-odašiljača i prijemnika, Heinrich R. Hertz 1887. godine primjećuje pojavu izbijanja električne iskre na iskrištu detektora kada se detektor ozrači ultraljubičastim zračenjem. Ovim je Hertz dokazao postojanje elektromagnetskih valova, ali je istovremeno otkrio i fotoelektrični učinak.

Slika 1.2. Hertzov emiter i detektor elektromagnetskih valova^[5]

Wilhelm Hallwachs je 1888. godine načinio jednostavan pokus tako da je izoliranu pločicu cinka spojio na elektroskop te je obasjavao svjetlom različitih intenziteta i valnih duljina. Nakon Hallwachsovog pokusa postalo je jasno da se kod fotoelektričnog učinka pod utjecajem svjetlosti događa izbacivanje negativnog naboja iz metala. Međutim, nije postojala nikakva teorija, nikakvo odgovarajuće objašnjenje promatranog fenomena.^[4]

Misterij se počeo razrješavati 1899. godine. Tada su J. J. Thomson i P. Lenard pokusima s vakuumskim cijevima pokazali da su negativno nabijene čestice, koje se izbacuju pri fotoelektričnoj pojavi - elektroni. Philipp Lenard 1902. godine otkriva kako elektroni emitirani s metala pod utjecajem ultraljubičastog zračenja imaju različite brzine. Brzine elektrona ne ovise o intenzitetu svjetlosti kojom se obasjava metal nego samo o frekvenciji zračenja. Na slici 1.3 prikazan je Lenardov uređaj za proučavanje fotoelektričnog učinka.

Slika 1.3. Uređaj za proučavanje fotoelektričnog učinka^[6]

Svjetlost ulazi kroz kvarcni prozor (P) i pada na foto-katodu (FK), odnosno na materijal koji ima svojstvo da iz njega izlaze elektroni kada na njega pada svjetlost. Foto-katoda je priključena preko ampermetra (A) na izvor električne struje čiji se polaritet može mijenjati, a napon se prati voltmetrom (V). ^[6] Rezultati ovako izvedenog eksperimenta dovode do sljedećih zaključaka:

 Ako se frekvencija upadne svjetlosti (ν) ne mijenja i ako je stalan napon izvora (U), onda je struja (I) proporcionalna intenzitetu zračenja upadne svjetlosti (G) (slika 1.4).

Slika 1.4. Ovisnost struje I o intenzitetu zračenja G^[6]

- 2) Fotoelektroni su iz određenog materijala izbačeni samo za vrijednost frekvencije veće od neke minimalne frekvencije v_g , koju zovemo graničnom frekvencijom. Za frekvenciju svjetlosti manju od te granične frekvencije, bez obzira na intenzitet svjetlosti, fotoelektričnog učinka nema. Veličina v_g različita je za različite materijale.
- 3) Maksimalna kinetička energija fotoelektrona može se odrediti tako da se postepeno smanjuje (pozitivan) naboj na anodi. Kada je U=0, struja i dalje teče strujnim krugom jer postoje elektroni koji, izbačeni iz katode, spontano dolaze do anode i zatvaraju strujni krug. Ako se poveća negativan naboj na anodi, sve manje elektrona uspijeva doći do nje - dolaze oni elektroni koji imaju dovoljnu kinetičku energiju. Najmanja razlika potencijala između katode i anode koja uspije spriječiti upravo te elektrone s najvećom energijom zove se zaustavni napon, U_z . Maksimalna kinetička energija fotoelektrona tada je dana izrazom:

$$E_{kmax} = \frac{mv_{maks}^2}{2} = e * U_z. \tag{1}$$

Pokus pokazuje da zaustavni napon U_z ne ovisi o intenzitetu svjetlosti, nego o frekvenciji.^[6]

4) Smanjivanje intenziteta na krajnje male vrijednosti dovodi do stvaranja vrlo malog broja fotoelektrona koje je vrlo teško detektirati. Rezultati, međutim, pokazuju da su ti elektroni izbačeni trenutačno i s istom maksimalnom kinetičkom energijom, kao i kada je upotrijebljen velik intenzitet svjetlosti. ^[6]

Postojanje granične frekvencije i nedostatak fotoelektričnog učinka ispod te frekvencije, čak i pri velikim intenzitetima, nije bilo moguće objasniti valnom prirodom svjetlosti, budući da je energija koja se prenosi elektromagnetskim valom proporcionalna intenzitetu svjetlosti.

Vodeći američki eksperimentalni fizičar R. Millikan je radio deset godina uporno i mukotrpno da nadiđe Lenardova eksperimentalna ograničenja. Ipak je 1916. godine morao zaključiti da njegovi eksperimenti ne ruše, nego naprotiv, nepobitno dokazuju Einsteinovo objašnjenje fotoelektričnog učinka. Za objašnjenje je Einstein dobio Nobelovu nagradu 1921. godine, dok je Millikan, za svoje precizne eksperimente s fotoelektričnim učinkom, istu nagradu dobio 1923. godine.

1.1.2. Einsteinovo tumačenje fotoelektričnog učinka

Postojanje fotoelektričnog učinka nije iznenađujuće sa stanovišta klasične elektromagnetske teorije. Bilo je, naime, poznato da materija sadrži elektrone, i da se baš unutar metala relativno "slobodno" kreće mnogo elektrona. Proučavanje termoemisije elektrona iz vrućih metala pokazuje da pojedini elektron može napustiti metal ako mu se zagrijavanjem dade neka minimalna energija, jednaka tzv. Izlaznom radu metala. Naime, apsorpcijom elektromagnetskog zračenja elektroni mogu toliko ubrzati da pobjegnu iz potencijala koji ih veže za metal. Ipak, valna teorija svjetlosti, kao ni klasična fizika općenito, nikako ne može objasniti fotoelektrični učinak.

Albert Einstein 1905. godine objašnjava fotoelektrični učinak uopćavanjem Planckove hipoteze o kvantiziranoj energiji, čime ukazuje na to da se određene pojave u prirodi ne mogu objasniti pomoću klasične fizike, nego je potrebno uvesti novu granu, kvantnu fiziku. Ako je frekvencija svjetlosti v, svjetlost prenosi energiju u kvantima, a energija kvanta svjetlosti E_{γ} izražena je Planckovom relacijom:

$$E_{\gamma} = h * \nu. \tag{2}$$

Elektron u metalu taj kvant apsorbira i ako je energija kvanta svjetlosti dovoljno velika, tada se (samo) jedan dio potroši na izlazni rad W_i, a dio se preda elektronu kao kinetička energija (slika 1.5):

$$E_{\gamma} = h * \nu = W_i + E_{kmax}.$$
(3)

To je Einsteinova jednadžba za fotoelektrični učinak.^[4] Granična frekvencija svjetlosti v_g odgovara situaciji kad je elektron "oslobođen", ali nije preostalo ništa energije da bi napustio površinu metala ($E_{kmax} = 0$). Iz relacija (3) tada slijedi:

$$W_i = h \nu_g \tag{4} ,$$

gdje W_i predstavlja izlazni rad, koji je jednak energiji vezanja elektrona za metal, a ovisi o vrsti metala.

Slika 1.5. Ovisnost maksimalne energije fotoelektrona o frekvenciji elektromagnetskog zračenja

Einsteinovo objašnjenje fotoelektričnog učinka uključuje sasvim novu predodžbu svjetlosti: svjetlost je sastavljena od čestica – fotona. Foton se giba brzinom c, nosi energiju h*v i ima za čestice karakterističnu veličinu – količinu gibanja p koja je jednaka^[6]:

$$p = \frac{E}{c} = \frac{h\nu}{c} = \frac{h}{\lambda} \qquad (5)$$

1.2. SOLARNA ĆELIJA

Solarna ćelija je skup elektroničkih elemenata koji upadnu sunčevu energiju pretvaraju u električnu.

1.2.1. Princip rada solarne ćelije

Solarna ćelija je u biti poluvodička dioda, odnosno PN spoj (slika 1.6). PN spoj nastaje ako se jednom dijelu kristala čistog poluvodiča dodaju trovalentne (akceptorske) primjese tako da nastane P tip poluvodiča, a drugom dijelu peterovalentne (donorske) primjese te nastaje N tip. Na granici između ta dva područja (PN spoj), kao posljedica gradijenta koncetracije, nastaje difuzija elektrona iz N područja prema P području i šupljina iz P područja prema N području. Šupljine koje tako prijeđu u N područje rekombiniraju se s elektronima, a elektroni kada dođu u P područje rekombiniraju se sa šupljinama. U uskom sloju na granici PN spoja ostaju samo negativni i pozitivni (donorski i akceptorski) ioni, formira se električno polje koje nakon nekog vremena, kada se postigne ravnoteža, zaustavi difuziju, a time i rekombinaciju. U tom tzv. osiromašenom (prijelaznom) području gustoća slobodnih (vodljivih) nosilaca naboja vrlo je mala i prostorni naboj čine uglavnom ioni primjesa. Nastalo područje potencijalne barijere bitno je za rad PN spoja.^[7]

Slika 1.6. Shematski prikaz PN spoja^[7]

Putem fotoelektričnog učinka sunčeva energija se može direktno pretvoriti u električnu u solarnim ćelijama. Kada solarna ćelija apsorbira sunčevo zračenje, na njezinim krajevima javlja se elektromotorna sila (napon). Pri osvjetljavanju ćelije apsorbirani fotoni proizvode parove elektron-šupljina. Ako apsorpcija nastane daleko od PN spoja, nastali par ubrzo se rekombinira. Međutim, nastane li apsorpcija unutar ili u blizini PN spoja, unutrašnje električno polje, koje postoji u osiromašenom području, odvaja nastali elektron i šupljinu - elektron se giba prema N strani, a šupljina prema P

strani. Takvo sakupljanje elektrona i šupljina na odgovarajućim stranama PN spoja uzrokuje elektromotornu silu na krajevima solarne ćelije.^[7]

Kao primjer izvedbe solarne ćelije detaljnije promotrimo silicijsku solarnu ćeliju koja je prikazana na slici 1.7. Na površini pločice P tipa silicija difundirane su primjese, npr. fosfora, tako da na tankom površinskom sloju nastane područje N tipa poluvodiča. Da bi se sakupili naboji nastali apsorpcijom fotona iz sunčeva zračenja, na prednjoj površini nalazi se metalna rešetka, a zadnja je strana prekrivena metalnim kontaktom. Rešetkasti kontakt na prednjoj strani načinjen je tako da ne prekrije više od 5% površine te on gotovo i ne utječe na apsorpciju sunčeva zračenja. Prednja površina ćelije može biti prekrivena i prozirnim antirefleksijskim slojem koji smanjuje refleksiju sunčeve svjetlosti i tako povećava djelotvornost ćelije.^[7]

Slika 1.7. Silicijska solarna ćelija^[7]

Da bi se dobio odgovarajući napon, odnosno snaga, ćelije se mogu spajati serijski i paralelno. Tako se dobivaju moduli solarnih ćelija u obliku ploče (panela) na kojoj su ćelije učvršćene i zaštićene od atmosferskih i drugih utjecaja. Moduli se slažu jedan do drugog u fotonaponske ravne kolektore, a kolektori zajedno s ostalim potrebnim elementima (pretvaračima, regulatorima, akumulatorima i sl.) tvore fotonaponski sustav.^[7]

1.2.2. Parametri solarne ćelije

Opis solarne ćelije radi se putem tzv. strujno naponske (I-U) karakteristike, tj. superpozicije I-U krivulje diode solarne ćelije u mraku i fotogenerirane struje. Osvijetljena solarna ćelija proizvodi fotostruju I_l , nakon čega je struja kroz potrošač u izlaznom krugu:

$$I = I_0 \left(e^{\frac{q * U}{n * k * T}} - 1 \right) - I_l$$
(6)

gdje je: I_0 - struja tame, q - naboj elektrona, U - napon na ćeliji, n - faktor idealnosti diode, k - Boltzmanova konstanta, T - temperatura.

Slika 1.8. I-U karakteristika neosvijetljene i osvijetljene solarne ćelije^[8]

Slika 1.9. Osnovni parametri solarne ćelije^[8]

Radi jednostavnijeg promatranja fotostruje, karakteristika iz kvadranta 1 prelazi u kvadrant 4 (slika 1.9), čime jednadžba poprima oblik:

$$I = I_l - I_0 (e^{\frac{q * U}{n * k * T}} - 1) .$$
⁽⁷⁾

I-U karakteristika prolazi kroz tri karakteristične točke u kojima su definirani najvažniji parametri solarne ćelije koji su prikazani na slici 1.9:

1. Struja kratkog spoja I_{sc} – struja koja teče kad je napon na stezaljkama solarne ćelije jednak nuli.

2. Napon otvorenog kruga U_{oc} – napon koji postoji na stezaljkama solarne ćelije u režimu otvorenog kruga (tj., kada je I=0).

3. Točka maksimalne snage P_m – točka u kojoj solarna ćelija daje najveću moguću snagu. Maksimalna snaga P_m odgovara najvećoj mogućoj površini pravokutnika koji se može upisati u I-U karakteristiku. U točki maksimalne snage vrijednost struje je I_m , a napona U_m .^[7]

1.3. MATERIJALI ZA IZRADU SOLARNIH ĆELIJA

Materijali za izradu solarnih ćelija mogu se svrstati u četiri generacije. Prvu generaciju predstavljaju monokristalični i polikristalični silicij, koji čine oko 80% svih solarnih ćelija. U drugoj generaciji solarnih ćelija pojavljuju se tanki filmovi materijala poput amorfnog silicija, slitine kadmija i telurija te bakar-indij-diselenida. Tipičan predstavnik treće generacije su te organsko polimerne solarne ćelije. ^[9] Četvrta generacija kombinira nisku cijenu i fleksibilnost tankih filmova polimera sa stabilnošću novih anorganskih nanostruktura, npr. grafena. ^[10]

1.3.1. Kristalični silicij

Karakteristični predstavnik materijala prve generacije je monokristalični silicij (slika 1.10). Prilikom izrade ćelija od monokristaličnog silicija režu se listovi u obliku kvadrata ili kruga, debljine 250µm do 450µm.^[7] Površina ćelije koja je okrenuta prema izvoru zračenja zbog električnog kontakta prekriva se metalnom rešetkom, dok donja metalna zaštitna podloga služi kao drugi kontakt. Pomoću tri odvojena sloja metala ostvaruje se električni kontakt. Donji dio čini tanki sloj titana, korišten radi dobre adhezije sa silicijem. Središnji dio čini sloj paladija, koji se koristi kako bi se izbjeglo neželjeno reagiranje titana i srebra, uzrokovano vlagom. Gornji dio načinjen je od srebra, zbog pogodnosti koje ono pruža prilikom lemljenja te niskog otpora. Metalna rešetka na površini okrenutoj Suncu, najčešće ima razmak vodljivih traka mrežice oko 5 mm. Ovaj materijal karakterizira visoka sposobnost apsorpcije svjetla u rasponu od 400nm do 900 nm. ^[11] Trake koje čine vodljivu mrežicu imaju debljinu oko 0,2 mm. ^[7] Prvi silicijski solarni panel izrađen je od monokristala silicija dobivenog Czochralskijevim procesom sredinom prošlog stoljeća. ^[12] Ćelije od monokristaličnog silicija imaju vrlo visoku cijenu, koja je posljedica izrazito skupog i zahtjevnog procesa proizvodnje.^[7]

Slika 1.10. Solarna ćelija načinjena od monokristaličnog silicija^[13]

1.3.2. Amorfni silicij

Najčešće korišten predstavnik druge generacije materijala je modul načinjen od amorfnog silicija (slika 1.11). Amorfnost kod materijala označava nedostatak pravilnog simetričnog prostornog rasporeda na atomskoj razini. Kod amorfnog silicija pojedini atom kovalentno je povezan s atomima koji ga okružuju, ali nema trodimenzionalnu periodičnost svojstvenu kristalima. Ovaj materijal također karakterizira visoka sposobnost apsorpcije svjetla u rasponu od 300nm do 800 nm.^[14] Tanki slojevi silicija dovoljni su za visoku fotonaponsku konverziju. Optimalna debljina sloja amorfnog silicija iznosi 0.3µm – 0.6µm, što je znatno manje nego debljina sloja potrebna za isti faktor apsorpcije kod kristaličnog silicija. Ovaj materijal moguće je nanositi na bilo koju podlogu u obliku tankog filma, bila ona plastika, folija, metal, staklo ili neka druga podloga.^[7]

Slika 1.11. Solarna ćelija načinjena od amorfnog silicija

1.3.3. Organski polimer

Tipičan predstavnik treće generacije materijala je modul načinjen od organskog polimernog materijala (slika 1.12). Zbog visoke cijene metala za izradu solarnih ćelija, kao jedno od alternativnih rješenja za pojavili su se polimerni materijali, koji metalima ne konkuriraju djelotvornošću, ali su stoga znatno jeftiniji. Polimerne solarne ćelije mogu biti izrađene na različite načine, s različitim slojevima i strukturama. Smjer toka naboja ovisi o geometriji same ćelije, pa tako imamo polimerne solarne ćelije s normalnom geometrijom, gdje je podloga s transparentnom elektrodom na sebi - pozitivna elektroda, a gornji dio ćelije je negativna elektroda, te polimerne solarne ćelije obrnute geometrije, gdje je podloga s transparentnom elektrodom na sebi - negativna elektroda, a gornji dio ćelije je negativna elektroda. Između pozitivne i negativne elektrode, u oba slučaja nalazi se sloj za prijenos elektrona, aktivni sloj i sloj za prijenos šupljina. Ove materijale karakterizira sposobnost apsorpcije svjetla u rasponu od 350nm do 680nm. ^[15] Sposobnost apsorpcije ovisi o debljini same ćelije, tj. ona raste povećanjem broja slojeva ćelije, ali time i rastu troškovi proizvodnje.

Slika 1.12. Solarna ćelija načinjena od organskog polimera [16]

2. EKSPERIMENTALNI DIO

Eksperimentalni dio završnog rada izveden je tijekom studenog i prosinca 2018. godine na Fakultetu elektrotehnike, strojarstva i brodogradnje Sveučilišta u Splitu na Zavodu za elektrotehniku i računarstvo, pod vodstvom izv. prof. dr. sc. Tihomira Bettija.

2.1. CILJ EKSPERIMENTA

U eksperimentalnom dijelu rada testirane su ćelije prve, druge i treće generacije. Izmjerene su I-U karakteristike triju modula načinjenih od različitih materijala. Cilj eksperimenta bio je utvrditi koji materijal ima najbolje performanse u solarnom modulu te analizirati ovisnost struje kratkog spoja i napona otvorenog kruga o intenzitetu zračenja za testirane module.

2.2. MJERNI INSTRUMENTI I MJERENI UZORCI

Cjelovita shema eksperimentalnog dijela rada dana je na slici 2.1.

Slika 2.1. Shema eksperimentalnog rada

Prilikom mjerenja I-U karakteristike korišten je uređaj Keithley 2612A Source-Measure-Unit (slika 2.2). To je uređaj i elektronički instrument koji simultano može generirati struju i napon, te mjeriti struju, napon, otpor i snagu. Instrumenti poput ovoga koriste se za testne aplikacije kod kojih se traži visoka fleksibilnost mjerenja, razlučivost te točnost. Mjerenje I-U karakteristike na uređaju Keithley 2612A Source-Measure-Unit vršeno je pomoću TSP Express softvera, koji dolazi ugrađen s ovim instrumentom, a služi za brzo prikupljanje podataka za I-U mjerenja.

Slika 2.2. Keithley 2612A Source-Measure-Unit

Nadalje, u mjerenju je korištena halogena lampa Sylvania Hi-Spot 120 Halogen 100W 240V Flood 30°. Uređaj HT 204 Solar Power Meter korišten je za mjerenje razine intenziteta zračenja (slika 2.3). Mjerenje nije izvedeno u standardnim uvjetima nego u laboratoriju, gdje je lampa služila kao simulator sunčevog zračenja.

Slika 2.3. Fotografija mjerenja I-U karakteristike

Mjerene uzorke čine moduli od monokristaličnog silicija, amorfnog silicija i organskog polimera.

Modul od monokristaličnog silicija, korišten u eksperimentalnom dijelu, ima dvije paralelno spojene grane s po dvanaest serijski spojenih solarnih ćelija. Dimenzije modula su 10 cm x 8,1 cm. Njegova površina je 81 cm² (slika 2.4).

Slika 2.4. Modul izrađen od monokristaličnog silicija

Modul od amorfnog silicija (slika 2.5) ima 8 serijski spojenih solarnih ćelija. Dimenzije modula su 7,5 cm x 7,5 cm pa mu je površine 56,25 cm².

Slika 2.5. Modul izrađen od amorfnog silicija

Predstavnik treće generacije materijala, prikazan na slici 2.6, je modul načinjen od organskog polimera koji ima osam serijski spojenih solarnih ćelija. Modul ima dimenzije 9,3 cm x 9,7 cm i površinu 90,21 cm².

Slika 2.6. Modul izrađen od organske polimerne ćelije

2.3. MJERENJE

Standardna metoda mjerenja je mjerenje I-U karakteristike, koja se mjeri pri temperaturi ćelije od 25°C. Testiranje je izvršeno primjenom napona na kontakte fotonaponskog modula. Napon je u određenim koracima mijenjan od nule do određene preferirane vrijednosti te je za svaku vrijednost napona izmjerena pripadajuća struja kroz uzorak. I-U karakteristika mjerena je promjenom intenziteta osvjetljenja, što je u ovome eksperimentu postignuto promjenom udaljenosti između lampe i uzorka.

Zbog nedostatka eksperimentalnog postava nije bilo moguće mjeriti strujno naponsku karakteristiku fotonaponskih modula osvijetljenih uvijek istim intenzitetom zračenja. Stoga se za usporedbu različitih modula koriste podaci dobiveni pri približno jednakim intenzitetima zračenja. Velika snaga korištene lampe bitno povećava temperaturu fotonaponskog modula pa se nastojalo lampu uključivati neposredno prije mjerenja, radi skraćivanja vremena izlaganja modula svjetlu, kako bi se smanjilo njegovo zagrijavanje.

3. REZULTATI I RASPRAVA

Primjenom mjernog uređaja Keithley 2612A Source-Measure-Unit dobiven je niz izmjerenih vrijednosti struje u ovisnosti o naponu. Reprezentativni rezultati mjerenja za različite uzorke dani su u Tablici 3.1. Treba naglasiti da je dano po pet mjerenja za tri različita intenziteta zračenja G (500 Wm⁻², 600 Wm⁻² i 1000 Wm⁻²).

	Kristalični		Amorfni		Organski	
	silicij (c-Si)		silicij (a-Si)		polimer (OPV)	
Intenzitet	U I		U	Ι	U	Ι
zračenja [Wm ⁻²]	[V]	[A]	[V]	[A]	[V]	[A]
	0,0000	0,0396	0,0001	0,0066	0,0000	0,0070
	3,1507	0,0391	0,7500	0,0065	2,4001	0,0056
500	5,1111	0,0377	2,5498	0,0061	3,3603	0,0046
	5,3912	0,0345	3,5500	0,0051	4,3205	0,0023
	6,0910	0,0001	4,2500	0,0003	6,0004	0,0093
	0,0000	0,0432	0,0001	0,0076	0,0000	0,0084
	2,8704	0,0430	1,5500	0,0074	1,1401	0,0078
600	4,8305	0,0411	2,9501	0,0068	2,1002	0,0071
	5,6707	0,0238	3,9500	0,0044	3,3002	0,0058
	6,0208	0,0005	4,3001	0,0003	4,8601	0,0002
1000	0,0348	0,0749	0,0001	0,0122	0,0000	0,0152
	1,6968	0,0690	1,3500	0,0120	1,1401	0,0141
	2,1700	0,0661	2,9500	0,0114	2,1002	0,0128
	5,2502	0,0638	3,5498	0,0106	2,8201	0,0116
	6,2301	0,0001	4,4500	0,0007	5,0403	0,0003

Tablica 3.1. Prikaz nekoliko mjerenih I-U karakteristika triju testiranih modula prirazličitim intenzitetima zračenja G

Grafovi I-U karakteristika za testirane module (slika 3.1, slika 3.2, slika 3.3) dobiveni su iz svih podataka mjerenja.

Slika 3.1. I-U karakteristika testiranih modula pri intenzitetu zračenja $G = 500 \text{ Wm}^{-2}$

Na slici 3.1 prikazane su I-U karakteristike triju mjerenih modula pri intenzitetu zračenja od 500 Wm⁻². Iz dobivenih grafova jasno je vidljivo kako kristalični silicij proizvodi znatno veću jakost struje od preostala dva modula. Modul načinjen od amorfnog silicija daje veću jakost struje od modula načinjenog od organskog polimera u području napona od 1,8 V do 4 V. Za vrijednosti napona manje od 1,8 V modul načinjen od organskog polimera generira struju veće jakosti. Unatoč tomu što su I-U karakteristike ova dva modula vrlo slične, u obzir treba uzeti činjenicu kako moduli imaju različite površine. Površina modula načinjenog od organskog polimera veća je za 60% od površine modula načinjenog od amorfnog silicija.

I-U karakteristike pri intenzitetu zračenja 600 Wm⁻² prikazane su na slici 3.2. Kao i pri intenzitetu od 500 Wm⁻², struju najveće jakosti proizvodi modul načinjen od kristaličnog silicija. Kod preostala dva materijala vidljivo je preklapanje krivulja pod određenim naponima. Malo veću jakost struje pri naponima većim od 1,5 V daje modul načinjen od amorfnog silicija, usprkos već opisanoj znatno manjoj površini modula.

Slika 3.2. I-U karakteristika testiranih modula pri intenzitetu zračenja $G = 600 \text{ Wm}^{-2}$

Slika 3.3 daje I-U karakteristike pri intenzitetu zračenja od 1000 Wm⁻². Prema očekivanjima, i pri ovome intenzitetu zračenja najveću jakost struje proizvodi modul načinjen od kristaličnog silicija. Za vrijednosti napona ispod 2,5 V uočavaju se određena odstupanja od uobičajene I-U krivulje. Ove nepravilnosti posljedica su nesavršenosti mjernog instrumenta. Kao i kod prethodna dva intenziteta, za module načinjene od amorfnog silicija i organskog polimera uočavaju se slične I-U karakteristike. U ovom slučaju, naponi pri kojima je jakost struje modula načinjenog od amorfnog silicija veća od jakosti struje modula načinjenog od organskog polimera, kreću se u intervalu između 3 V i 4 V.

Slika 3.3. I-U karakteristika testiranih modula pri intenzitetu zračenja $G = 1000 \text{ Wm}^{-2}$

Promjena intenziteta zračenja G bitno utječe na strujno-naponsku karakteristiku. Stoga je provedeno mjerenje ovisnosti struje kratkog spoja I_{sc} (Tablica 3.2) i napona otvorenog kruga U_{oc} o intenzitetu zračenja (Tablica 3.3), a rezultati su interpretirani putem grafova na slici 3.4 i slici 3.5.

Tablica 3.2. Rezultati mjerenja ovisnosti struje kratkog spoja (Isc) o intenzitetu zračenja(G) za testirane module

Kristalični silicij		Amorfni silicij		Organski polimer			
(c·	-Si)	(a-Si)		(a-Si)		(0	PV)
G	Isc	G	I _{sc}	G	Isc		
[Wm ⁻²]	[mA]	[Wm ⁻²]	[mA]	[Wm ⁻²]	[mA]		
550	31,669	500	6,559	450	6,993		
580	35,293	600	7,616	590	8,390		
750	56,875	900	11,576	680	9,432		
1000	74,937	1000	12,170	1050	15,190		

Slika 3.4. Ovisnost struje kratkog spoja Isc o intenzitetu zračenja G

Prema teoriji, struja kratkog spoja praktički je proporcionalna intenzitetu zračenja te je ovisnost linearna. Iz rezultata mjerenja prikazanih na slici 3.4 vidljivo je da u znatnom intervalu intenziteta zračenja grafovi za module od organskog polimera i amorfnog silicija zadovoljavaju linearnost. Najveće odstupanje od linearnosti pokazuje modul načinjen od kristaličnog silicija. Struja osvijetljene solarne ćelije dana je izrazom

 $I = I_l - I_0 (e^{\frac{q * U}{n * k * T}} - 1)$, gdje je I_l fotogenerirana struja. Ako se u jednadžbu uvrsti U = 0, slijedi da je struja kratkog spoja jednaka fotogeneriranoj struji I_l koja raste s porastom intenziteta zračenja. Uočljivo je da promjena intenziteta zračenja sa standardne vrijednosti 1000 Wm⁻² na upola manju vrijednost, 500 Wm⁻², kod sve tri vrste solarnih modula, rezultira približno upola manjom strujom kratkog spoja I_{sc}.

Teorijski izraz za napon u slučaju otvorenog kruga dobije se uvrštavanjem I = 0 u gornju jednadžbu za struju osvijetljene solarne ćelije: $U_{OC} = \frac{nkT}{e} ln \left(\frac{I_l}{I_o} + 1\right)$. Prema tome, napon otvorenog kruga logaritamski se mijenja s intenzitetom zračenja. Budući je funkcija prirodnog logaritma rastuća funkcija primjetno je da rezultati mjerenja prikazani na slici 3.5 pokazuju odstupanje od teorije.

Kristalični silicij		Amorfni silicij		Organski polimer	
(c-Si)		(a-Si)		(OPV)	
G	Uoc	G	U _{oc}	G	Uoc
[Wm ⁻²]	[V]	[Wm ⁻²]	[V]	[Wm ⁻²]	[V]
550	6,091034	500	4,249973	450	4,740231
580	6,020830	600	4,300084	590	4,860096
750	6,230860	900	4,449950	680	4,920290
1000	6,230052	1000	4,450011	1050	5,040259

Tablica 3.3. Rezultati mjerenja ovisnosti napona otvorenog kruga o intenzitetu zračenjaza testirane module

Slika 3.5. Ovisnost napona otvorenog kruga Uoc o intenzitetu zračenja G

Razlog odstupanja od teorije leži u povećanju temperature testiranih modula prilikom osvjetljenja. Temperaturni utjecaj je značajniji na vrijednosti napona te porast temperature uzrokuje smanjenje napona otvorenog kruga, a istovremeno struja kratkog spoja neznatno raste. Stoga je promjena struje kratkog spoja pri izvršenim mjerenjima mala pa je i manje odstupanje kod grafa ovisnosti I_{sc} o intenzitetu zračenja G.

4. ZAKLJUČAK:

- Testirani su fotonaponski moduli sastavljeni od solarnih ćelija kristaličnog silicija, amorfnog silicija te organskog polimera.
- Rezultati daju dobru osnovu za usporedbu testiranih materijala te nude bazu za promatranje ovisnosti struje kratkog spoja i napona otvorenog kruga o intenzitetu zračenja.
- Dobivene U–I karakteristike pri različitim intenzitetima zračenja svjetlosti pokazuju kako povećanjem intenziteta rastu vrijednosti fotogenerirane struje.
- Ovisnost struje kratkog spoja o intenzitetu zračenja za module od organskog polimera i amorfnog silicija zadovoljavaju linearnost. Mjerenja pokazuju da najveće odstupanje od linearnosti ima modul sastavljen od solarnih ćelija kristaličnog silicija.
- Zbog povećanja temperature testiranih modula prilikom osvjetljenja ovisnost napona otvorenog kruga o intenzitetu zračenja pokazuje odstupanje od teoretskih predviđanja.
- Svi moduli načinjeni od silicijskih solarnih ćelija pokazali su dobre fotonaponske karakteristike, a posebno oni sa solarnim ćelijama načinjenim od kristaličnog silicija. Iako solarne ćelije s organskim polimerom proizvode struju manje jakosti od silicijskih, zbog manje cijene, mogu biti dobar izbor.

5. LITERATURA

- [1] W. Anderson, Y. Chai, Energy Conversion, 1976, 15, 85-94.
- [2] D. Halliday, R. Resnick, Fundamentals of physics, 9th edition, New York, Wiley, John & Sons, Incorporated, New York, **2009**.
- [3] Fotoelektrični efekt i Comptonovo raspršenje, 2015.

URL: <u>https://www.fkit.unizg.hr/_news/35326/IvaMovreSapic-</u> Fotoefekt_Compton.pdf., pristupljeno u rujnu 2019.

- [4] D. Subašić, Einstein i kvant svjetlosti, Sveučilište u Zagrebu, Prirodoslovnomatematički fakultet, 2015.
- [5] D. Klabučar, Matematičko-fizički list, Zagreb, 2006, LVI, 1-10.
- [6] D. Horvat, Fizika II, Element, Zagreb, 2018.
- [7] P. Kulišić, J. Vuletin, I. Zulin, Sunčane ćelije, Školska knjiga, Zagreb 1994.
- [8] T. Betti, Testiranje fotonaponskih modula u realnim uvjetima, magistarski rad, Fakultet elektrotehnike, strojarstva i brodogradnje, Sveučilište u Splitu, Split, 2005.
- [9] K. Vozel, Solar Cells, University of Ljubljana, Faculty of Mathematics and Physics, Ljubljana, **2011**.
- [10] J. A. Luceño-Sánchez, A. M. Díez-Pascual i R. Peña Capilla, International Journal of Molecular Sciences, 2019, 20, 1- 42.
- [11] S. Hassan, D. Lowell, M. Adewole, D. George, H. Zhang i Y. Lin, Photonics, 2017, 5, 1-9.
- [12] R. Moore, SOL CELLS, **1982**, 5, 313-329.
- [13] Advances in crystalline silicon solar cell technology for industrial mass production, 2010

URL: <u>https://www.nature.com/articles/am201082/figures/1#f1</u>., pristupljeno u rujnu 2019.

- [14] X. Chen, B. Jia, J. K. Saha, B. Cai, N. Stokes, Q. Qiao, Y. Wang, Z. Shi i M. Gu, NANO LETTERS, 2012, 12, 2187-2192.
- [15] G. Li, R. Zhu i Y. Yang, Nature Photonics 2012, 6, 153–161.
- [16] B. M. Askari, Introduction to Organic Solar Cells, Teheran: Department of Physics Azad University, Teheran, 2014.